Description
Vegetated swales are open, shallow channels with vegetation covering the side slopes and bottom that collect and slowly convey runoff flow to downstream discharge points. They are designed to treat runoff through filtering by the vegetation in the channel, filtering through a subsoil matrix, and/or infiltration into the underlying soils. Swales can be natural or manmade. They trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the flow velocity of stormwater runoff. Vegetated swales can serve as part of a stormwater drainage system and can replace curbs, gutters and storm sewer systems.

California Experience
Caltrans constructed and monitored six vegetated swales in southern California. These swales were generally effective in reducing the volume and mass of pollutants in runoff. Even in the areas where the annual rainfall was only about 10 inches/yr, the vegetation did not require additional irrigation. One factor that strongly affected performance was the presence of large numbers of gophers at most of the sites. The gophers created earthen mounds, destroyed vegetation, and generally reduced the effectiveness of the controls for TSS reduction.

Advantages
- If properly designed, vegetated, and operated, swales can serve as an aesthetic, potentially inexpensive urban development or roadway drainage conveyance measure with significant collateral water quality benefits.
Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible.

Limitations

- Can be difficult to avoid channelization.
- May not be appropriate for industrial sites or locations where spills may occur.
- Grassed swales cannot treat a very large drainage area. Large areas may be divided and treated using multiple swales.
- A thick vegetative cover is needed for these practices to function properly.
- They are impractical in areas with steep topography.
- They are not effective and may even erode when flow velocities are high, if the grass cover is not properly maintained.
- In some places, their use is restricted by law: many local municipalities require curb and gutter systems in residential areas.
- Swales are more susceptible to failure if not properly maintained than other treatment BMPs.

Design and Sizing Guidelines

- Flow rate based design determined by local requirements or sized so that 85% of the annual runoff volume is discharged at less than the design rainfall intensity.
- Swale should be designed so that the water level does not exceed 2/3rds the height of the grass or 4 inches, which ever is less, at the design treatment rate.
- Longitudinal slopes should not exceed 2.5%
- Trapezoidal channels are normally recommended but other configurations, such as parabolic, can also provide substantial water quality improvement and may be easier to mow than designs with sharp breaks in slope.
- Swales constructed in cut are preferred, or in fill areas that are far enough from an adjacent slope to minimize the potential for gopher damage. Do not use side slopes constructed of fill, which are prone to structural damage by gophers and other burrowing animals.
- A diverse selection of low growing, plants that thrive under the specific site, climatic, and watering conditions should be specified. Vegetation whose growing season corresponds to the wet season are preferred. Drought tolerant vegetation should be considered especially for swales that are not part of a regularly irrigated landscaped area.
- The width of the swale should be determined using Manning’s Equation using a value of 0.25 for Manning’s n.
Vegetated Swale

Construction/Inspection Considerations

- Include directions in the specifications for use of appropriate fertilizer and soil amendments based on soil properties determined through testing and compared to the needs of the vegetation requirements.

- Install swales at the time of the year when there is a reasonable chance of successful establishment without irrigation; however, it is recognized that rainfall in a given year may not be sufficient and temporary irrigation may be used.

- If sod tiles must be used, they should be placed so that there are no gaps between the tiles; stagger the ends of the tiles to prevent the formation of channels along the swale or strip.

- Use a roller on the sod to ensure that no air pockets form between the sod and the soil.

- Where seeds are used, erosion controls will be necessary to protect seeds for at least 75 days after the first rainfall of the season.

Performance

The literature suggests that vegetated swales represent a practical and potentially effective technique for controlling urban runoff quality. While limited quantitative performance data exists for vegetated swales, it is known that check dams, slight slopes, permeable soils, dense grass cover, increased contact time, and small storm events all contribute to successful pollutant removal by the swale system. Factors decreasing the effectiveness of swales include compacted soils, short runoff contact time, large storm events, frozen ground, short grass heights, steep slopes, and high runoff velocities and discharge rates.

Conventional vegetated swale designs have achieved mixed results in removing particulate pollutants. A study performed by the Nationwide Urban Runoff Program (NURP) monitored three grass swales in the Washington, D.C., area and found no significant improvement in urban runoff quality for the pollutants analyzed. However, the weak performance of these swales was attributed to the high flow velocities in the swales, soil compaction, steep slopes, and short grass height.

Another project in Durham, NC, monitored the performance of a carefully designed artificial swale that received runoff from a commercial parking lot. The project tracked 11 storms and concluded that particulate concentrations of heavy metals (Cu, Pb, Zn, and Cd) were reduced by approximately 50 percent. However, the swale proved largely ineffective for removing soluble nutrients.

The effectiveness of vegetated swales can be enhanced by adding check dams at approximately 17 meter (50 foot) increments along their length (See Figure 1). These dams maximize the retention time within the swale, decrease flow velocities, and promote particulate settling. Finally, the incorporation of vegetated filter strips parallel to the top of the channel banks can help to treat sheet flows entering the swale.

Only 9 studies have been conducted on all grassed channels designed for water quality (Table 1). The data suggest relatively high removal rates for some pollutants, but negative removals for some bacteria, and fair performance for phosphorus.
Table 1 Grassed swale pollutant removal efficiency data

<table>
<thead>
<tr>
<th>Study</th>
<th>TSS</th>
<th>TP</th>
<th>TN</th>
<th>NO₃</th>
<th>Metals</th>
<th>Bacteria</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltrans 2002</td>
<td>77</td>
<td>8</td>
<td>67</td>
<td>66</td>
<td>83-90</td>
<td>-33</td>
<td>dry swales</td>
</tr>
<tr>
<td>Goldberg 1993</td>
<td>67.8</td>
<td>4.5</td>
<td>-</td>
<td>31.4</td>
<td>42–62</td>
<td>-100</td>
<td>grassed channel</td>
</tr>
<tr>
<td>Seattle Metro and Washington Department of Ecology, 1992</td>
<td>60</td>
<td>45</td>
<td>-</td>
<td>-25</td>
<td>2–16</td>
<td>-25</td>
<td>grassed channel</td>
</tr>
<tr>
<td>Wang et al., 1981</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>70–80</td>
<td></td>
<td></td>
<td>dry swale</td>
</tr>
<tr>
<td>Dorman et al., 1989</td>
<td>98</td>
<td>18</td>
<td>-</td>
<td>45</td>
<td>37–81</td>
<td></td>
<td>dry swale</td>
</tr>
<tr>
<td>Harper, 1988</td>
<td>87</td>
<td>83</td>
<td>84</td>
<td>80</td>
<td>88–90</td>
<td></td>
<td>dry swale</td>
</tr>
<tr>
<td>Kercher et al., 1983</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td></td>
<td>dry swale</td>
</tr>
<tr>
<td>Harper, 1988</td>
<td>81</td>
<td>17</td>
<td>40</td>
<td>52</td>
<td>37–69</td>
<td></td>
<td>wet swale</td>
</tr>
<tr>
<td>Koon, 1995</td>
<td>67</td>
<td>39</td>
<td>-</td>
<td>9</td>
<td>-35 to 6</td>
<td></td>
<td>wet swale</td>
</tr>
</tbody>
</table>

While it is difficult to distinguish between different designs based on the small amount of available data, grassed channels generally have poorer removal rates than wet and dry swales, although some swales appear to export soluble phosphorus (Harper, 1988; Koon, 1995). It is not clear why swales export bacteria. One explanation is that bacteria thrive in the warm swale soils.

Siting Criteria

The suitability of a swale at a site will depend on land use, size of the area serviced, soil type, slope, imperviousness of the contributing watershed, and dimensions and slope of the swale system (Schueler et al., 1992). In general, swales can be used to serve areas of less than 10 acres, with slopes no greater than 5%. Use of natural topographic lows is encouraged and natural drainage courses should be regarded as significant local resources to be kept in use (Young et al., 1996).

Selection Criteria (NCTCOG, 1993)

- Comparable performance to wet basins
- Limited to treating a few acres
- Availability of water during dry periods to maintain vegetation
- Sufficient available land area

Research in the Austin area indicates that vegetated controls are effective at removing pollutants even when dormant. Therefore, irrigation is not required to maintain growth during dry periods, but may be necessary only to prevent the vegetation from dying.
The topography of the site should permit the design of a channel with appropriate slope and cross-sectional area. Site topography may also dictate a need for additional structural controls. Recommendations for longitudinal slopes range between 2 and 6 percent. Flatter slopes can be used, if sufficient to provide adequate conveyance. Steep slopes increase flow velocity, decrease detention time, and may require energy dissipating and grade check. Steep slopes also can be managed using a series of check dams to terrace the swale and reduce the slope to within acceptable limits. The use of check dams with swales also promotes infiltration.

Additional Design Guidelines

Most of the design guidelines adopted for swale design specify a minimum hydraulic residence time of 9 minutes. This criterion is based on the results of a single study conducted in Seattle, Washington (Seattle Metro and Washington Department of Ecology, 1992), and is not well supported. Analysis of the data collected in that study indicates that pollutant removal at a residence time of 5 minutes was not significantly different, although there is more variability in that data. Therefore, additional research in the design criteria for swales is needed. Substantial pollutant removal has also been observed for vegetated controls designed solely for conveyance (Barrett et al, 1998); consequently, some flexibility in the design is warranted.

Many design guidelines recommend that grass be frequently mowed to maintain dense coverage near the ground surface. Recent research (Colwell et al., 2000) has shown mowing frequency or grass height has little or no effect on pollutant removal.

Summary of Design Recommendations

1) The swale should have a length that provides a minimum hydraulic residence time of at least 10 minutes. The maximum bottom width should not exceed 10 feet unless a dividing berm is provided. The depth of flow should not exceed 2/3rds the height of the grass at the peak of the water quality design storm intensity. The channel slope should not exceed 2.5%.

2) A design grass height of 6 inches is recommended.

3) Regardless of the recommended detention time, the swale should be not less than 100 feet in length.

4) The width of the swale should be determined using Manning’s Equation, at the peak of the design storm, using a Manning’s n of 0.25.

5) The swale can be sized as both a treatment facility for the design storm and as a conveyance system to pass the peak hydraulic flows of the 100-year storm if it is located “on-line.” The side slopes should be no steeper than 3:1 (H:V).

6) Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. If flow is to be introduced through curb cuts, place pavement slightly above the elevation of the vegetated areas. Curb cuts should be at least 12 inches wide to prevent clogging.

7) Swales must be vegetated in order to provide adequate treatment of runoff. It is important to maximize water contact with vegetation and the soil surface. For general purposes, select fine, close-growing, water-resistant grasses. If possible, divert runoff (other than necessary irrigation) during the period of vegetation.
establishment. Where runoff diversion is not possible, cover graded and seeded areas with suitable erosion control materials.

Maintenance

The useful life of a vegetated swale system is directly proportional to its maintenance frequency. If properly designed and regularly maintained, vegetated swales can last indefinitely. The maintenance objectives for vegetated swale systems include keeping up the hydraulic and removal efficiency of the channel and maintaining a dense, healthy grass cover.

Maintenance activities should include periodic mowing (with grass never cut shorter than the design flow depth), weed control, watering during drought conditions, reseeding of bare areas, and clearing of debris and blockages. Cuttings should be removed from the channel and disposed in a local composting facility. Accumulated sediment should also be removed manually to avoid concentrated flows in the swale. The application of fertilizers and pesticides should be minimal.

Another aspect of a good maintenance plan is repairing damaged areas within a channel. For example, if the channel develops ruts or holes, it should be repaired utilizing a suitable soil that is properly tamped and seeded. The grass cover should be thick; if it is not, reseed as necessary. Any standing water removed during the maintenance operation must be disposed to a sanitary sewer at an approved discharge location. Residuals (e.g., silt, grass cuttings) must be disposed in accordance with local or State requirements. Maintenance of grassed swales mostly involves maintenance of the grass or wetland plant cover. Typical maintenance activities are summarized below:

- Inspect swales at least twice annually for erosion, damage to vegetation, and sediment and debris accumulation preferably at the end of the wet season to schedule summer maintenance and before major fall runoff to be sure the swale is ready for winter. However, additional inspection after periods of heavy runoff is desirable. The swale should be checked for debris and litter, and areas of sediment accumulation.

- Grass height and mowing frequency may not have a large impact on pollutant removal. Consequently, mowing may only be necessary once or twice a year for safety or aesthetics or to suppress weeds and woody vegetation.

- Trash tends to accumulate in swale areas, particularly along highways. The need for litter removal is determined through periodic inspection, but litter should always be removed prior to mowing.

- Sediment accumulating near culverts and in channels should be removed when it builds up to 75 mm (3 in.) at any spot, or covers vegetation.

- Regularly inspect swales for pools of standing water. Swales can become a nuisance due to mosquito breeding in standing water if obstructions develop (e.g., debris accumulation, invasive vegetation) and/or if proper drainage slopes are not implemented and maintained.
Cost

Construction Cost

Little data is available to estimate the difference in cost between various swale designs. One study (SWRPC, 1991) estimated the construction cost of grassed channels at approximately $0.25 per ft². This price does not include design costs or contingencies. Brown and Schueler (1997) estimate these costs at approximately 32 percent of construction costs for most stormwater management practices. For swales, however, these costs would probably be significantly higher since the construction costs are so low compared with other practices. A more realistic estimate would be a total cost of approximately $0.50 per ft², which compares favorably with other stormwater management practices.
Table 2 Swale Cost Estimate (SEWRPC, 1991)

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit</th>
<th>Extent</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mobilization / Demobilization-Light</td>
<td>Swale</td>
<td>1</td>
<td>$107</td>
<td>$274</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>Acre</td>
<td>0.5</td>
<td>$2,200</td>
<td>$3,800</td>
</tr>
<tr>
<td>Clearing</td>
<td>Acre</td>
<td>0.25</td>
<td>$3,800</td>
<td>$6,200</td>
</tr>
<tr>
<td>Grubbing</td>
<td>Yd³</td>
<td>372</td>
<td>$2.10</td>
<td>$3.70</td>
</tr>
<tr>
<td>Excavation</td>
<td>Yd²</td>
<td>1,210</td>
<td>$0.20</td>
<td>$0.35</td>
</tr>
<tr>
<td>Level and Tilting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Development</td>
<td>Yd²</td>
<td>1,210</td>
<td>$0.40</td>
<td>$1.00</td>
</tr>
<tr>
<td>Salvaged Topsoil</td>
<td>Yd²</td>
<td>1,210</td>
<td>$1.20</td>
<td>$2.40</td>
</tr>
<tr>
<td>Seed, and Mulch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$5,116</td>
<td>$9,388</td>
</tr>
<tr>
<td>Coningencies</td>
<td>Swale</td>
<td>1</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$6,395</td>
<td>$11,735</td>
</tr>
</tbody>
</table>

Source: (SEWRPC, 1991)

Note: Mobilization/demobilization refers to the organization and planning involved in establishing a vegetative swale.

* Swale has a bottom width of 1.0 foot, a top width of 10 feet with 1:3 side slopes, and a 1,000-foot length.

* Area cleared = (top width + 10 feet) x swale length.

* Area grubbed = (top width x swale length).

* Volume excavated = (0.67 x top width x swale depth) x swale length (parabolic cross-section).

* Area tilled = (top width + 8(swale depth³) x swale length (parabolic cross-section).

* Area seeded = area cleared x 0.5.

* Area sodded = area cleared x 0.5.
Vegetated Swale

Table 3 Estimated Maintenance Costs (SEWRPC, 1991)

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit Cost</th>
<th>Swale Size (Depth and Top Width)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawn Mowing</td>
<td>$0.35 / 1,000 ft²/mowing</td>
<td>$0.14 / linear foot</td>
<td>Lawn maintenance area = (top width + 10 feet) x length. Mow eight times per year</td>
</tr>
<tr>
<td>General Lawn Care</td>
<td>$3.00 / 1,000 ft³/year</td>
<td>$0.18 / linear foot</td>
<td>Lawn maintenance area = (top width + 10 feet) x length</td>
</tr>
<tr>
<td>Swale Debris and Litter Removal</td>
<td>$0.10 / linear foot / year</td>
<td>$0.10 / linear foot</td>
<td>–</td>
</tr>
<tr>
<td>Grass Reseeding with Mulch and Fertilizer</td>
<td>$0.30 / yd²</td>
<td>$0.01 / linear foot</td>
<td>Area revegetated equals 1% of lawn maintenance area per year</td>
</tr>
<tr>
<td>Program Administration and Swale Inspection</td>
<td>$0.15 / linear foot / year, plus $25 / inspection</td>
<td>$0.15 / linear foot</td>
<td>Inspect four times per year</td>
</tr>
<tr>
<td>Total</td>
<td>--</td>
<td>$0.58 / linear foot</td>
<td>$0.75 / linear foot</td>
</tr>
</tbody>
</table>
Maintenance Cost

Caltrans (2002) estimated the expected annual maintenance cost for a swale with a tributary area of approximately 2 ha at approximately $2,700. Since almost all maintenance consists of mowing, the cost is fundamentally a function of the mowing frequency. Unit costs developed by SEWRPC are shown in Table 3. In many cases vegetated channels would be used to convey runoff and would require periodic mowing as well, so there may be little additional cost for the water quality component. Since essentially all the activities are related to vegetation management, no special training is required for maintenance personnel.

References and Sources of Additional Information

Information Resources

Vegetated Swale

(a) Cross section of swale with check dam.

Provide for scour protection.

(b) Dimensional view of swale impoundment area.

Notation:

- \(L \) = Length of swale impoundment area per check dam (ft)
- \(D_0 \) = Depth of check dam (ft)
- \(S_0 \) = Bottom slope of swale (ft/ft)
- \(W \) = Top width of check dam (ft)
- \(W_0 \) = Bottom width of check dam (ft)
- \(Z_{hi} \) = Ratio of horizontal to vertical change in swale side slope (ft/ft)