Lessons Learned from Program Effectiveness Assessment Development and Implementation

> CASQA Webinar November 2, 2016

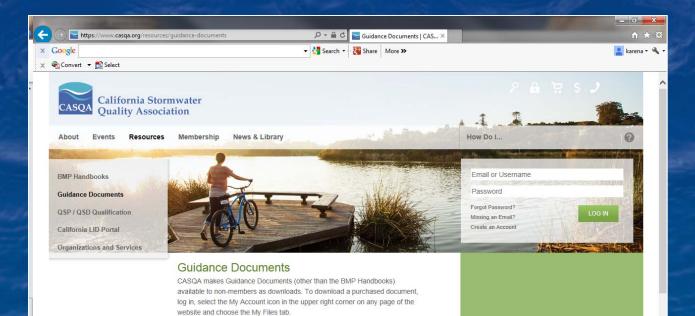
Hosted by: Karen Ashby – Larry Walker Associates Nora Jans – Michael Baker International

## Instructions for Today

Participants will be muted
Pause for questions after each speaker
Ask questions via the Q&A box on the WebEx webinar panel

Please send to "Host and Presenter"

# Agenda


 Stormwater Program Effectiveness Assessment for the City of Paso Robles

- David LaCaro, City of Paso Robles (17 min)
- LPR Model for Pollutant Load Reduction
  - Cathleen Garnand, County of Santa Barbara (17 min)
- Year 3: Program Effectiveness Assessment Results
  - Lisa Moretti, UC Davis (25 min)
- Orange County Stormwater Program's Headline Environmental Indicators

– Richard Boon, County of Orange (25 min)

- Non-Structural BMPs How do they Measure Up?
  - Paul Hartman, LWA (25 min)

### https://www.casqa.org/effectiveness\_assessment



Free Documents

#### Fact Sheet - SE-2

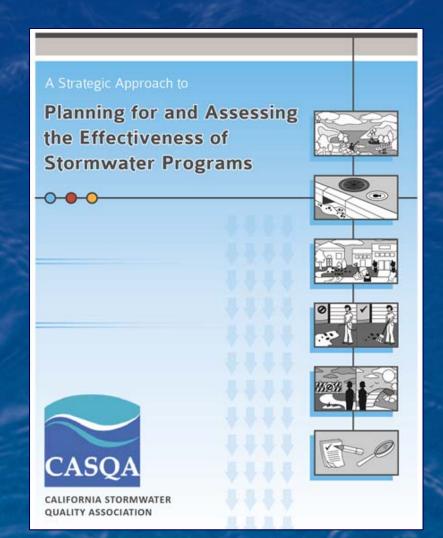
CASQA makes Fact Sheet SE-2 Sediment Basin available as a free download to help permittees comply with the California Construction General Permit (Order No. 2009-0009-DWQ). The Construction General Permit references the CASQA Fact Sheet in the following locations:

Attachment A: Linear Underground/Overhead Requirements; Section J. LUP Type-Specific Requirements; Subsection 5.b. Sediment Controls

Attachment C: Risk Level 1 Requirements; Section E.2 Sediment Controls

Attachment D: Risk Level 2 Requirements; Section E.2 Sediment Controls

Attachment E: Risk Level 3 Requirements; Section E.2 Sediment Controls


🔁 Download Fact Sheet SE-2 🕨

**Documents for Purchase** 

CASQA Introduction to Hydromodification: White Paper and Presentation This White Paper and Presentation present a basic vel

### **CASQA Guidance Document**

One approach Terms and key concepts Assessment strategy Assessment methods Identifies applicability to program elements/ minimum control measures Provides examples



## **Education and Outreach**

Program Effectiveness Assessment and Improvement Plan (PEAIP) Framework for Traditional MS4s

PERMITTEE NAME

Program Effectiveness Assessment and Improvement Plan

Prepared by PERMITTEE DEPARTMENT/DIVISION

87

This cover is an example that could be customized for your agency.

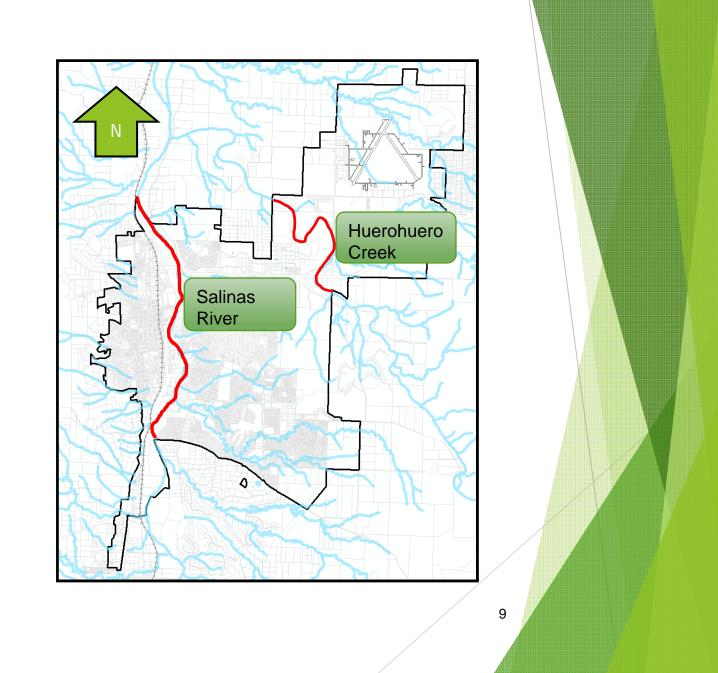
Program Effectiveness Assessment and Improvement Plan (PEAIP) Framework

Karen Ashby & Larry Walker As April 30, 2015

#### An Introduction to Strategically Planning and Assessing Stormwater Programs

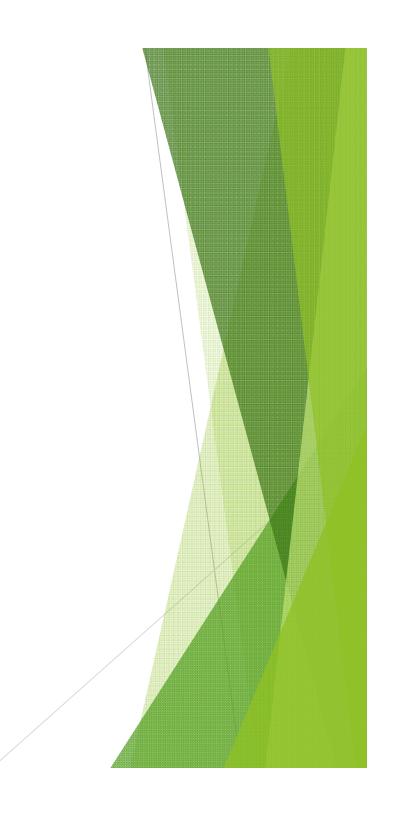
CASQA Webinar June 22, 2015

Jon Van Rhyn – County of San Diego David Pohl – ESA, San Diego, CA Karen Ashby - Larry Walker Associates, Davis, CA


6

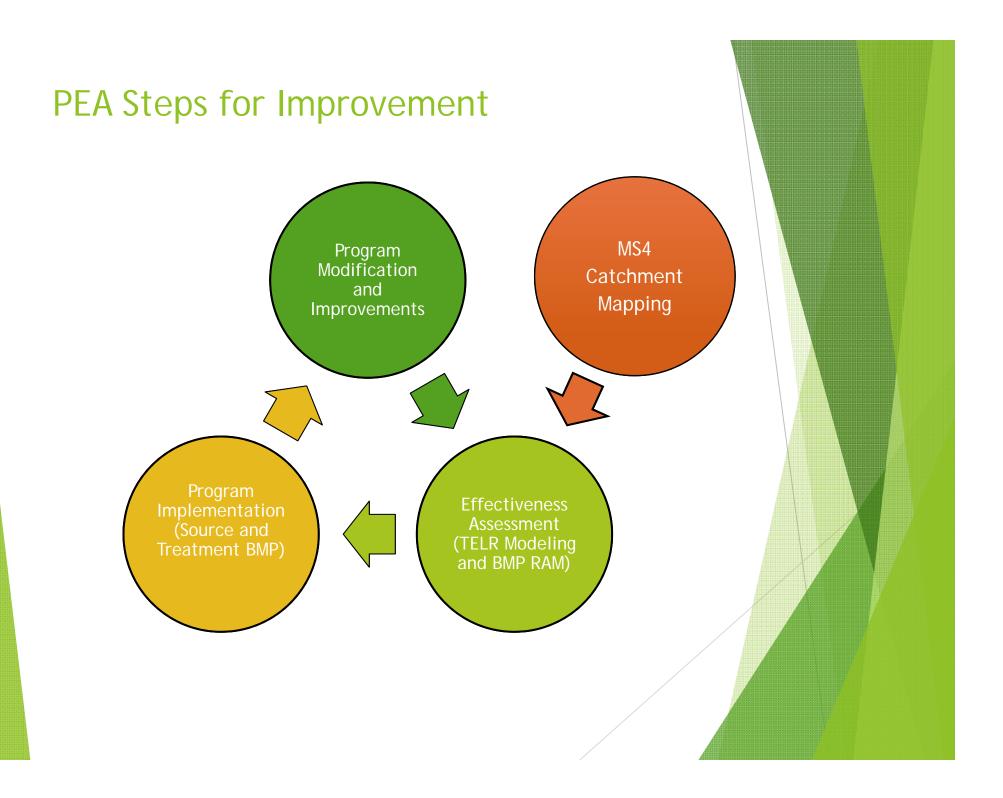
## Stormwater Program Effectiveness Assessment for the City of Paso Robles




# David LeCaro, Paso Robles



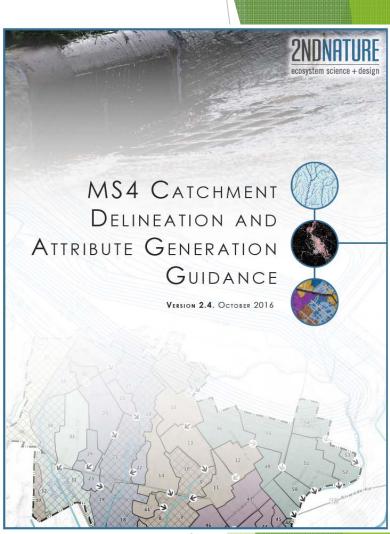



### **Presentation Outline**

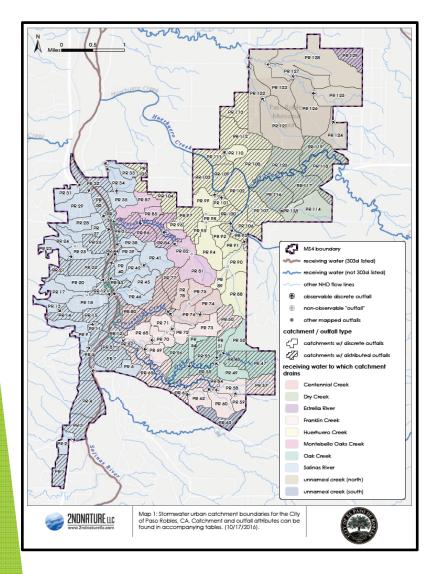
- Permit Requirements (E.14.)
- PEA implementation (necessary steps)
  - Mapping
  - ► BMP RAM
  - TELR (tool to estimate load reduction)
- Permit Linkage
- ▶ Benefits to TELR, BMP RAM, Parcel RAM
- Long-Term Tracking and Reporting

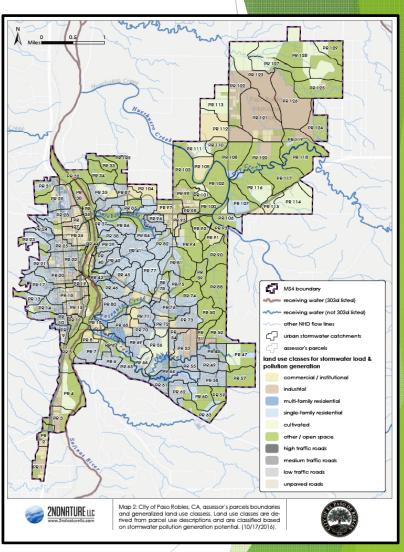


#### **General Permit Requirements**


- Program Effectiveness Assessment and Improvement (E.14.)
  - Develop a Plan
  - Assess BMPs and Program Effectiveness (i.e., Outcome Levels)
  - Assess Privately Owned BMP
  - Quantitatively Assess BMP Performance and Load Reduction
  - Answer Management Questions
  - Assess Available Water Quality Monitoring Data
- Central Coast Water Board Clarification
  - July 25, 2014 Letter (plan development, mapping, BMP inventory and effectiveness assessment, load reduction quantification)

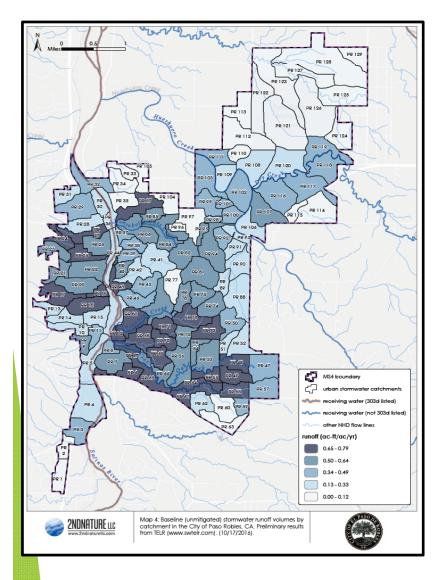


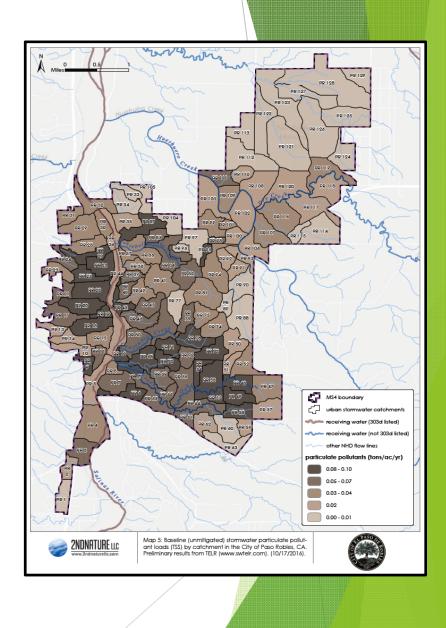

### Mapping Process


#### MS4 Catchment Delineation

- Catchment Routing/Connectivity
- Field mapping
- Attributes
  - Catchment attributes (slope, soils)
  - Land use attributes (% LUs per catchment, roads)
- ► Final MS4 Maps and Catchment Attributes

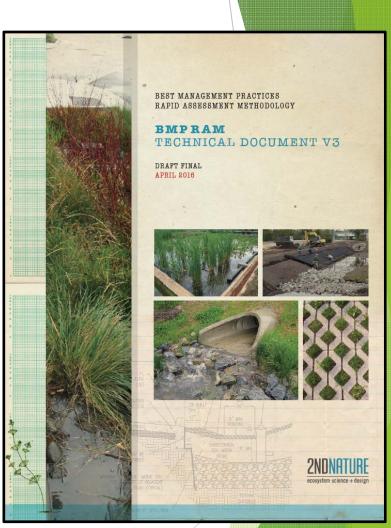



www.2ndnaturellc.com





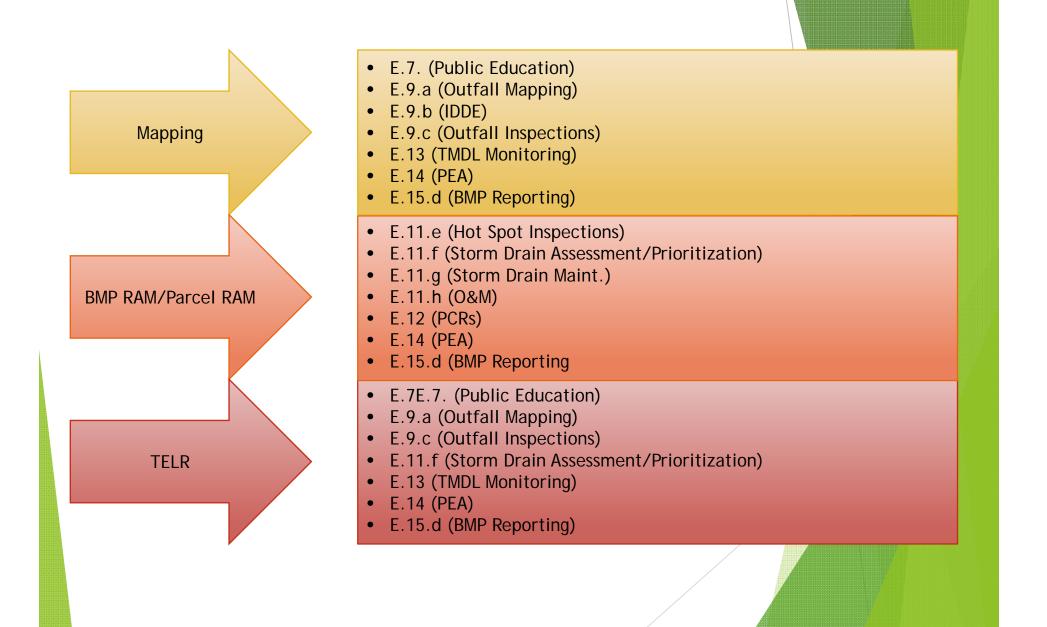

### **Tool to Estimate Load Reduction**


- Standard data set inputs (precipitation, soil type, % impervious surface, land use types, hydrologic connectivity)
- Evaluates Total Suspended Solids and Runoff Volume
  - Particulate Specific Pollutant and Proxy
  - Runoff Volume Loading
- Prioritizes catchments
- Easy user-friendly interface and spatial output for easy communication



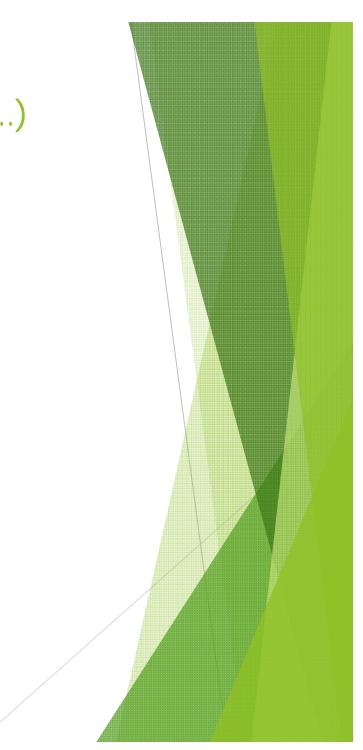


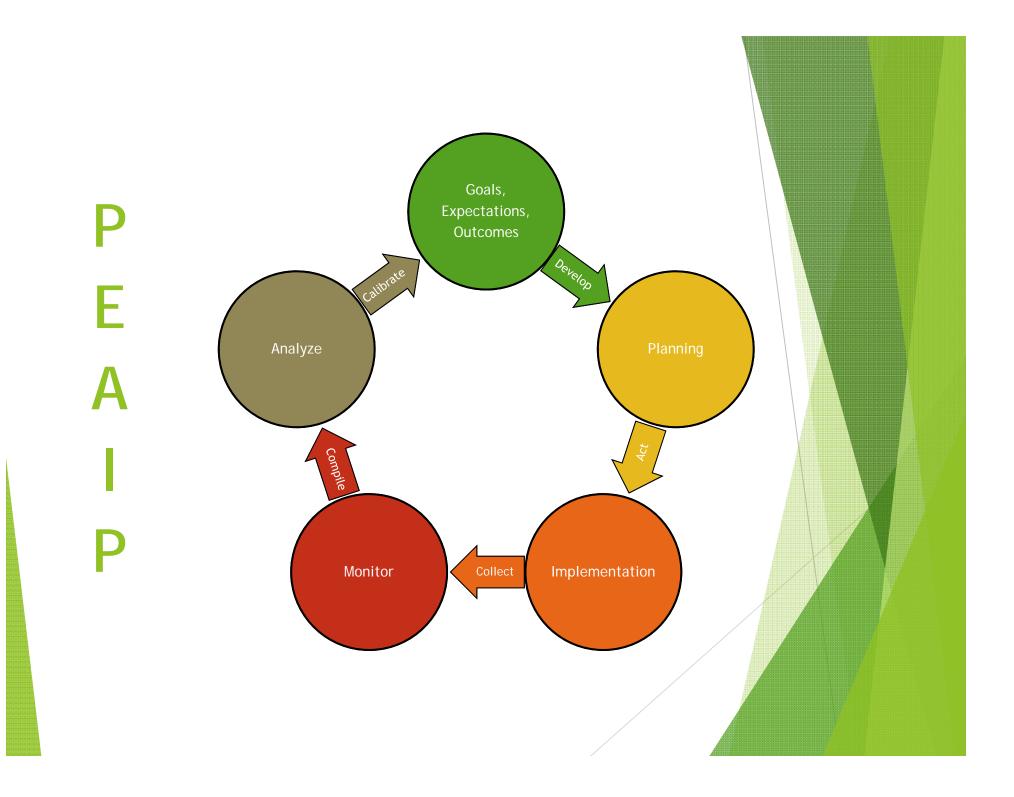
#### **BMP** Assessment


- Inventory BMPs
- Set Thresholds and Benchmarks
- Record Visual Observations
- Track BMP Effectiveness over time
- Prioritize Maintenance Needs
- ► Focus funding for CIPs/O&M
- Communicates with TELR



www.2ndnaturellc.com

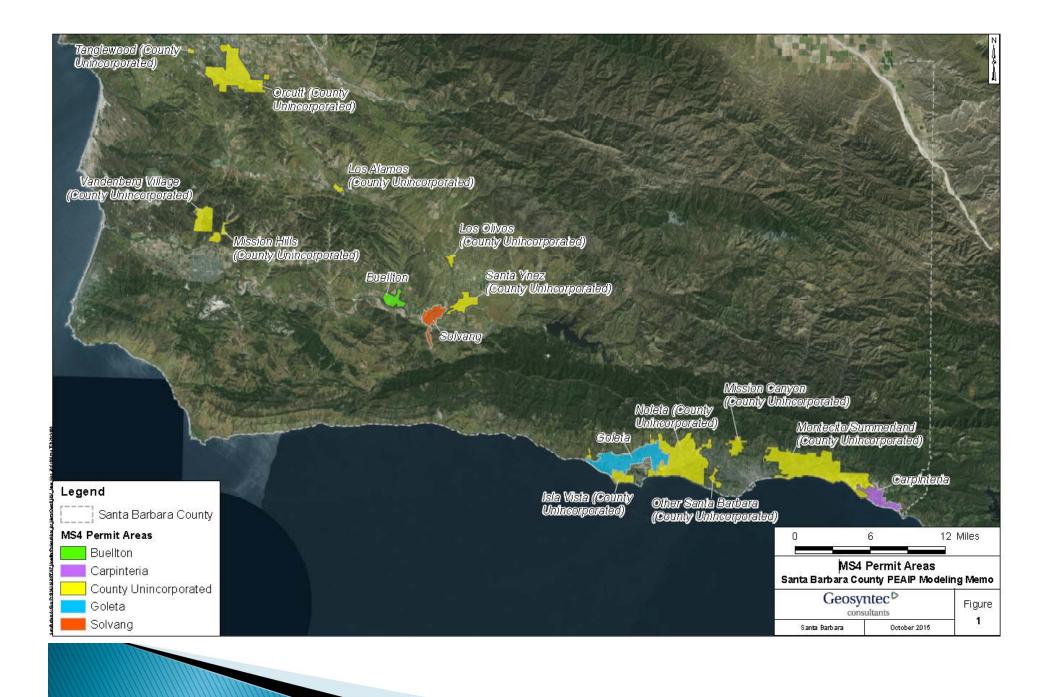


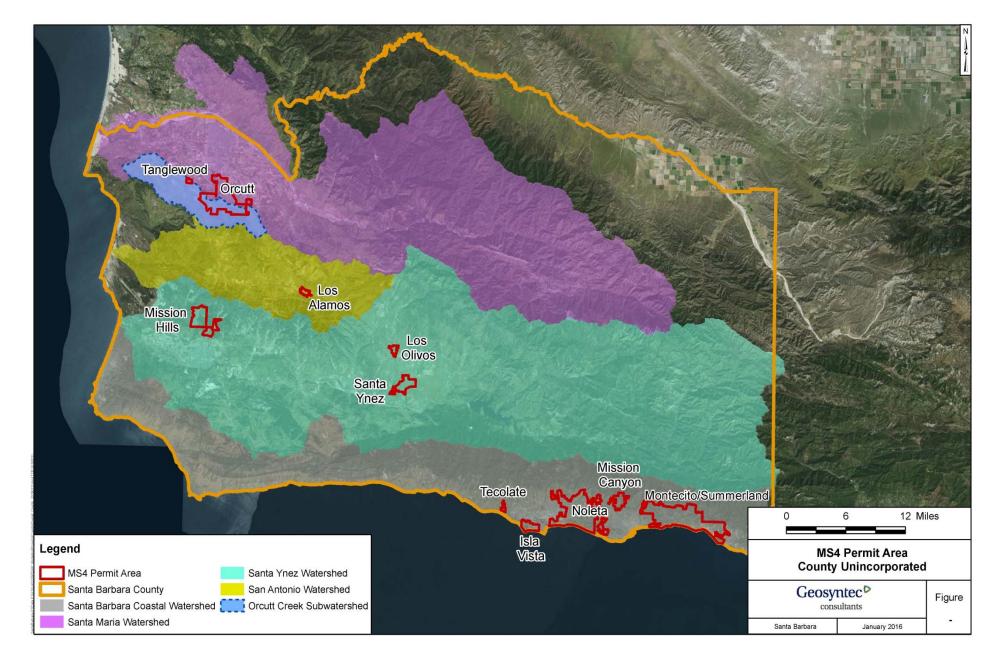






### Benefits (ancillary and otherwise...)

- Grant Chasing
  - supporting information/data
  - Prop 1 development
- Public Outreach/Involvement Tracking
  - Focused messaging and target areas
- ► Future Planning Scenarios
  - Assessing future development
  - Identifying beneficial BMP areas




# LPR Model for Pollutant Load Reduction

County of Santa Barbara Cities of Buellton, Solvang, Goleta, Carpinteria

Cathleen Garnand, County of Santa Barbara

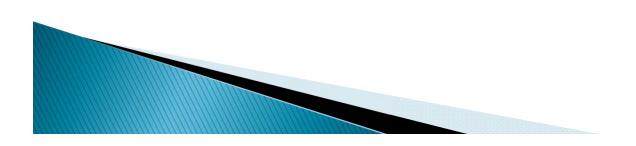


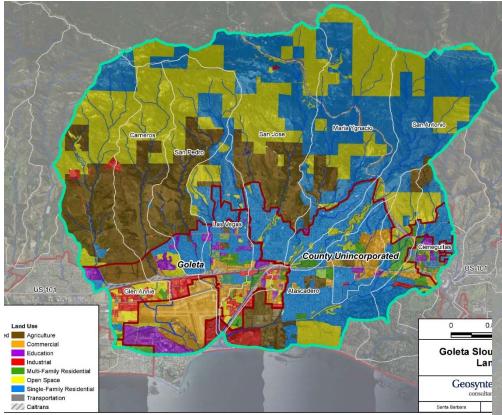




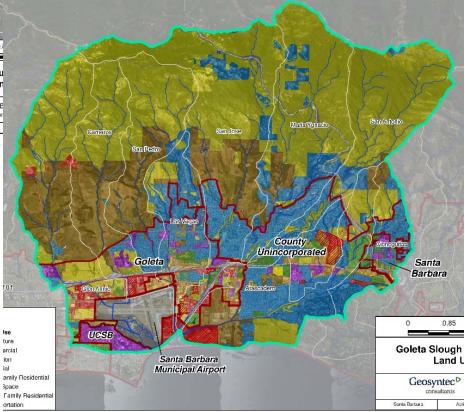
## PEAIP (E.14) meets Monitoring (E.13)

- Spatially-based model
- Quantify pollutant loads
- BMP load reduction
- Monitoring data to support model

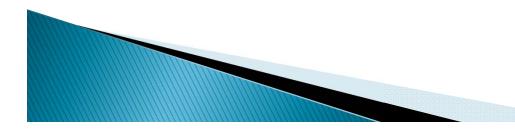


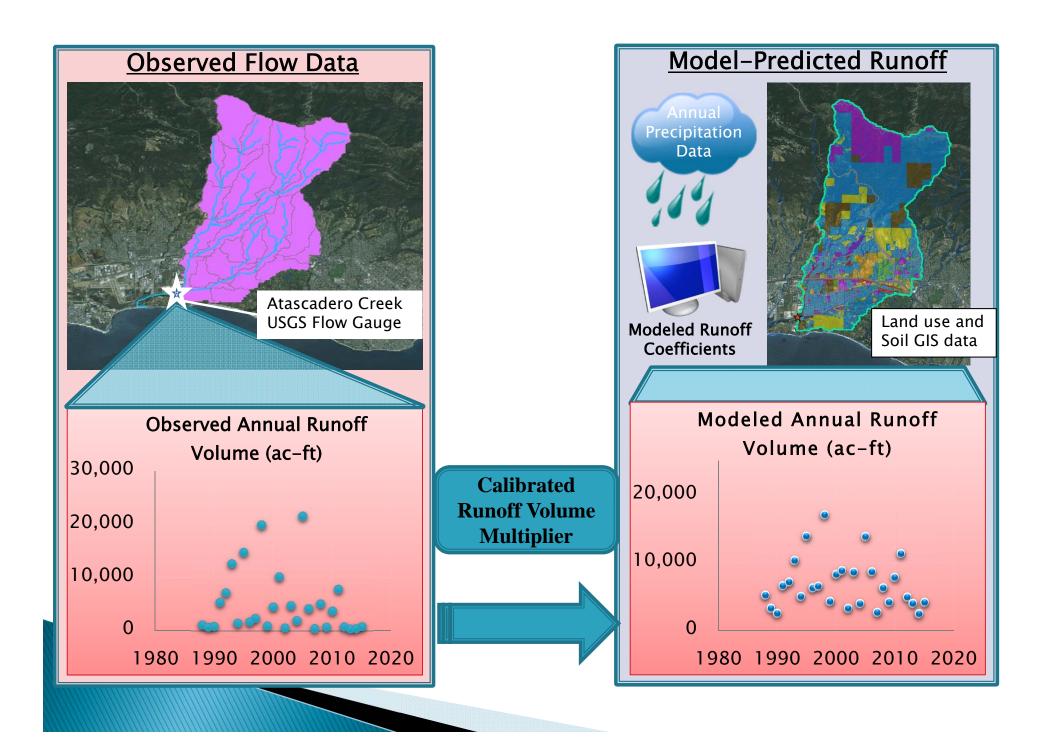


# Multiple Modeling Objectives

| Ph II MS4<br>Permit | 13267<br>Letter                  | TMDL<br>Plans                                                                                                          | SWRPs                                                                                                                                                                                                                   |
|---------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X<br>(pollutants)   | X<br>(vol/sed<br>only)           | X<br>(TMDL<br>pollutants)                                                                                              | X<br>(pollutants,<br>water supply)                                                                                                                                                                                      |
| X<br>(pollutants)   | X<br>(vol/sed<br>only)           | X<br>(TMDL<br>pollutants)                                                                                              |                                                                                                                                                                                                                         |
|                     | Х                                |                                                                                                                        |                                                                                                                                                                                                                         |
|                     | Х                                | Х                                                                                                                      |                                                                                                                                                                                                                         |
|                     | Х                                |                                                                                                                        |                                                                                                                                                                                                                         |
|                     |                                  |                                                                                                                        | X<br>(GIS-based)                                                                                                                                                                                                        |
|                     | Permit<br>X<br>(pollutants)<br>X | PermitLetterX<br>(pollutants)X<br>(vol/sed<br>only)X<br>(pollutants)X<br>(vol/sed<br>only)X<br>X<br>(vol/sed<br>only)X | PermitLetterPlansX<br>(pollutants)X<br>(vol/sed<br>only)X<br>(TMDL<br>pollutants)X<br>(pollutants)X<br>(vol/sed<br>only)X<br>(TMDL<br>pollutants)X<br>(pollutants)X<br>X<br>(TMDL<br>pollutants)XX<br>X<br>XX<br>X<br>X |


# LPR Model Features

- Meet Water Board requirements
- Low Cost
- User-friendly
- Easily customized and adjusted
- Multiple water quality parameters
- Track BMP implementation




Quantify annual average wet weather pollutant loads and runoff volumes



Inputs: soils, land use (IMP), precip data





## Model Framework

#### **Jurisdiction Calculation Tabs**

- Input data from GIS (catchments pre-populated, only change if needed)
- Input from "BMP Input" tab is transferred
- Calculates baseline loading and BMP load reductions (by catchment & land use)

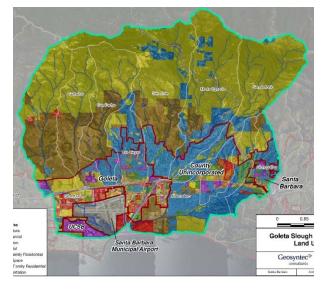
|                                             | Table 1. Base | line Load Calculation | ns (Goleta) |            |          |             |                |          |          |          |          |          |          | Ann      | ual Polluta | int Loads |          |          |            |
|---------------------------------------------|---------------|-----------------------|-------------|------------|----------|-------------|----------------|----------|----------|----------|----------|----------|----------|----------|-------------|-----------|----------|----------|------------|
| Goleta                                      | Catchment     | Land Use              | IMP (%)     | Hydrologic | Area     | C - Runoff  | Annual         | TSS      | Tot P    | Diss P   | NH3      | NO3      | TKN      | Diss Cu  | Tot Cu      | Tot Pb    | Diss Zn  | Tot Zn   | Fecal Col. |
|                                             | Catchinent    | Lanu Ose              | IIVIP (70)  | Soil Group | acres    | Coefficient | Runoff (cu ft) | lb          | lb        | lb       | lb       | 10^12 MPN  |
| Goleta Slough                               | A001          | Commercial            | 91          | В          | 0.0021   | 0.90        | 129            | 0.54     | 0.0032   | 0.0023   | 0.0097   | 0.0044   | 0.028    | 9.88E-05 | 2.52E-04    | 9.96E-05  | 0.0012   | 0.0019   | 2.01E-04   |
| Watershed                                   | A001          | Industrial            | 80          | В          | 0.11     | 0.79        | 5,947          | 81       | 0.14     | 0.097    | 0.22     | 0.32     | 1.1      | 0.0056   | 0.013       | 0.0061    | 0.16     | 0.20     | 0.031      |
|                                             | A001          | Commercial            | 91          | С          | 0.95     | 0.90        | 57,445         | 240      | 1.4      | 1.0      | 4.3      | 2.0      | 12       | 0.044    | 0.11        | 0.044     | 0.55     | 0.85     | 0.090      |
|                                             | A001          | Commercial            | 96          | С          | 0.56     | 0.94        | 35,407         | 148      | 0.88     | 0.64     | 2.7      | 1.2      | 7.6      | 0.027    | 0.069       | 0.027     | 0.34     | 0.52     | 0.055      |
| GIS Input                                   | A001          | Transportation        | 91          | С          | 0.95     | 0.90        | 57,445         | 279      | 2.4      | 2.0      | 1.3      | 2.7      | 6.6      | 0.12     | 0.19        | 0.033     | 0.80     | 1.1      | 0.027      |
| Model Calculations                          | A002          | Commercial            | 91          | В          | 2.49E-04 | 0.90        | 15             | 0.063    | 3.74E-04 | 2.71E-04 | 0.0011   | 5.14E-04 | 0.0032   | 1.15E-05 | 2.94E-05    | 1.16E-05  | 1.43E-04 | 2.22E-04 | 2.34E-05   |
| User Input (transferred from BMP Input tab) | A002          | Industrial            | 80          | В          | 0.048    | 0.79        | 2,565          | 35       | 0.062    | 0.042    | 0.096    | 0.14     | 0.46     | 0.0024   | 0.0055      | 0.0026    | 0.068    | 0.086    | 0.014      |
|                                             | A002          | Industrial            | 80          | С          | 2.05E-04 | 0.80        | 11             | 0.15     | 2.70E-04 | 1.80E-04 | 4.15E-04 | 6.01E-04 | 0.0020   | 1.05E-05 | 2.38E-05    | 1.13E-05  | 2.92E-04 | 3.71E-04 | 5.86E-05   |
|                                             | A002          | Commercial            | 91          | D          | 2.00E-06 | 0.90        | 0.12           | 5.09E-04 | 3.04E-06 | 2.20E-06 | 9.18E-06 | 4.17E-06 | 2.61E-05 | 9.34E-08 | 2.38E-07    | 9.41E-08  | 1.16E-06 | 1.80E-06 | 1.90E-07   |
|                                             | A002          | Industrial            | 80          | D          | 0.17     | 0.81        | 9,153          | 125      | 0.22     | 0.15     | 0.34     | 0.50     | 1.6      | 0.0087   | 0.020       | 0.0094    | 0.24     | 0.31     | 0.048      |
|                                             | A003          | Industrial            | 80          | С          | 0.95     | 0.80        | 51,287         | 702      | 1.2      | 0.83     | 1.9      | 2.8      | 9.2      | 0.049    | 0.11        | 0.053     | 1.4      | 1.7      | 0.27       |
|                                             | A003          | Industrial            | 80          | D          | 0.052    | 0.81        | 2,848          | 39       | 0.069    | 0.046    | 0.11     | 0.15     | 0.51     | 0.0027   | 0.0061      | 0.0029    | 0.075    | 0.096    | 0.015      |

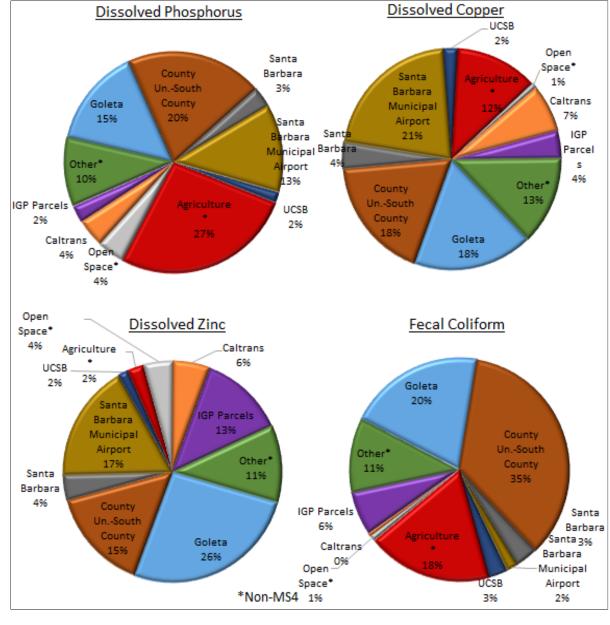
| Catchment | Land Use                                             | BMP Area Input                                                                                                                                                                                                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>BMP Treatment Area</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                      | % of Land Use OR Acres                                                                                                                                                                                                                           | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| All       | Single-Family Residential                            | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| All       | Commercial                                           | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All       | Industrial                                           | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All       | Multi-Family Residential                             | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All       | Transportation                                       | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All       | Education                                            | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All       | Agriculture                                          | 100%                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All       | Single-Family Re                                     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANNUAL LOAD RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | All<br>All<br>All<br>All<br>All<br>All<br>All<br>All | All     Single-Family Residential       All     Commercial       All     Industrial       All     Multi-Family Residential       All     Multi-Family Residential       All     Transportation       All     Education       All     Agriculture | Kof Land Use         OR Acres           All         Single-Family Residential         100%           All         Commercial         100%           All         Industrial         100%           All         Industrial         100%           All         Multi-Family Residential         100%           All         Multi-Family Residential         100%           All         Transportation         100%           All         Education         100%           All         Agriculture         100% | Mathematical         % of Land Use         OR         Acres         Year           All         Single-Family Residential         100%         2013           All         Commercial         100%         2013           All         Industrial         100%         2013           All         Industrial         100%         2013           All         Multi-Family Residential         100%         2013           All         Transportation         100%         2013           All         Education         100%         2013           All         Agriculture         100%         2013 |

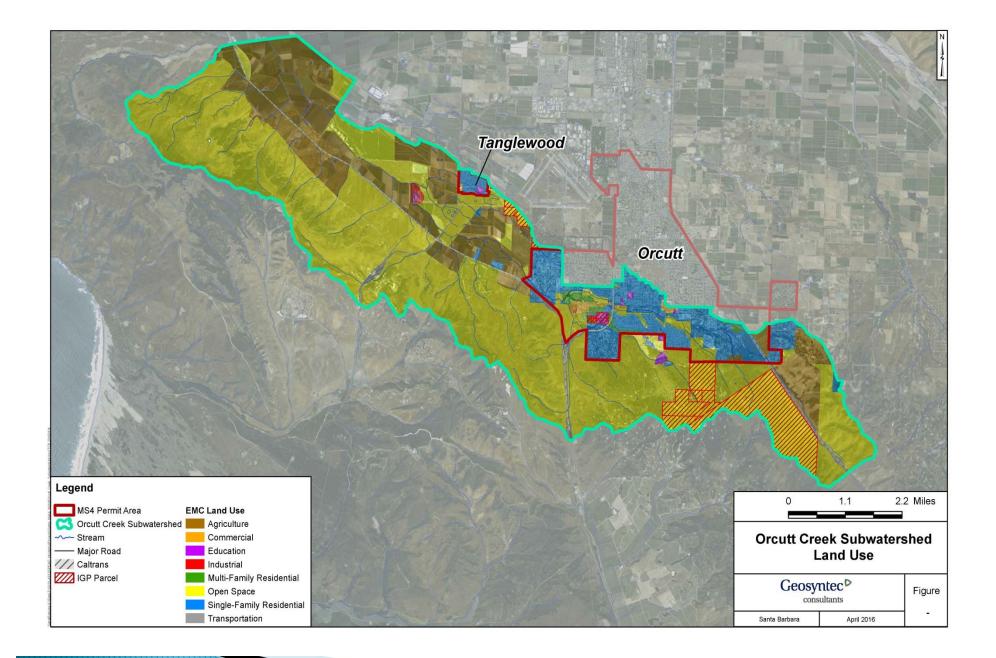
| brake Pad copper Phase-out tegislation | 00     | Single-Failing Re |        |     |       |        |     | AN  | INUAL LOA | D REDUCTI | ION    |        |         |        |            |
|----------------------------------------|--------|-------------------|--------|-----|-------|--------|-----|-----|-----------|-----------|--------|--------|---------|--------|------------|
| ••••••                                 |        |                   | Runoff | TSS | Tot P | Diss P | NH3 | NO3 | TKN       | Diss Cu   | Tot Cu | Tot Pb | Diss Zn | Tot Zn | Fecal Col. |
|                                        |        |                   | cu ft  | lb  | lb    | lb     | lb  | lb  | lb        | lb        | lb     | lb     | lb      | lb     | 10^12 MPN  |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.70      | 1.4    | 0      | 0       | 0      | 0          |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.74      | 1.9    | 0      | 0       | 0      | 0          |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.66      | 1.5    | 0      | 0       | 0      | 0          |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.20      | 0.32   | 0      | 0       | 0      | 0          |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.94      | 1.5    | 0      | 0       | 0      | 0          |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.22      | 0.35   | 0      | 0       | 0      | 0          |
|                                        |        |                   | 0      | 0   | 0     | 0      | 0   | 0   | 0         | 0.050     | 0.22   | 0      | 0       | 0      | 0          |
|                                        | 111111 |                   |        |     |       |        |     |     |           |           |        |        |         |        | <u> </u>   |

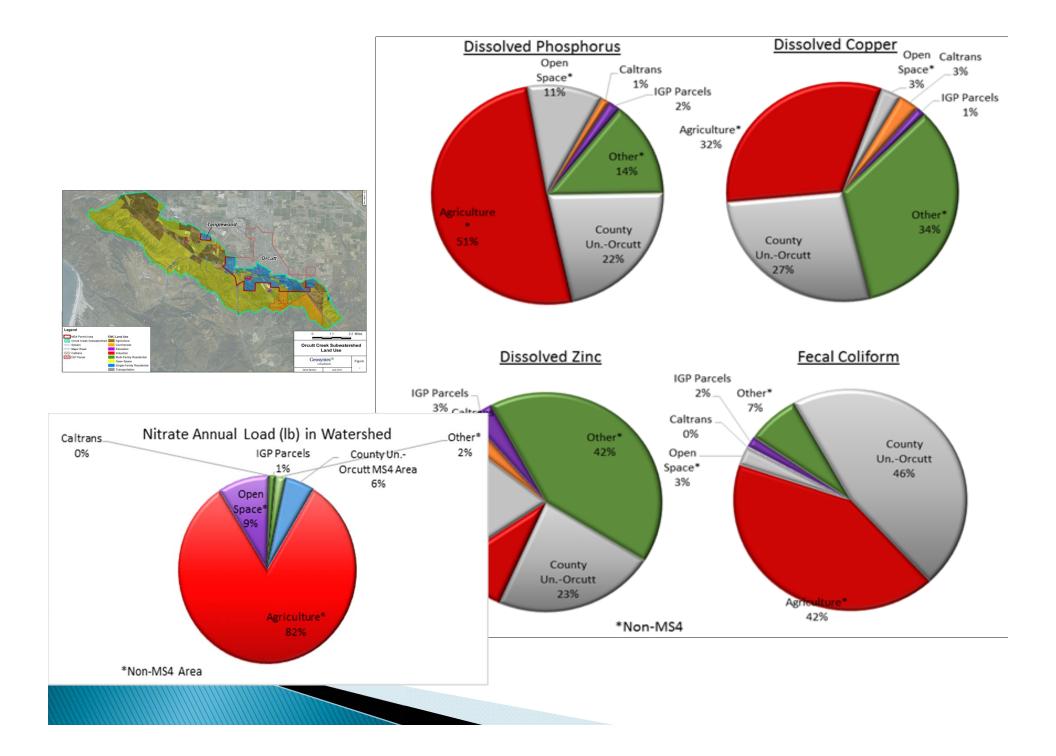
# Pollutant Load - by land use

#### Table 1. Baseline Loads by Catchment

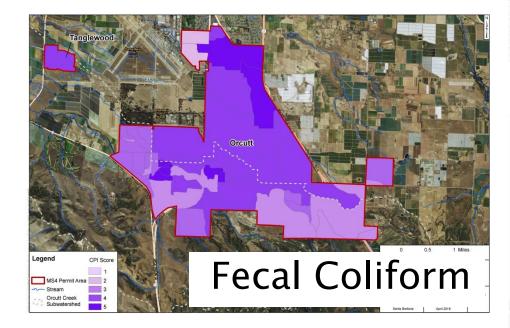

| Catchment | Runoff    | TSS    | Tot P | Diss P | NH3  | NO3  | TKN              | Diss Cu           | Tot Cu                     | Tot Pb      | Diss Zn                                                    | Tot Zn     | Fecal Cc I.                                        | Pollutant                                        | Pollutant                                   | Pollu |
|-----------|-----------|--------|-------|--------|------|------|------------------|-------------------|----------------------------|-------------|------------------------------------------------------------|------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------------|-------|
| <b>.</b>  | cu ft     | lb     | lb    | lb     | lb   | lb   | lb               | lb                | lb                         | lb          | lb                                                         | lb         | 10^12 MPN                                          | unit                                             | unit                                        | un    |
| A001      | 156,372   | 749    | 4.9   | 3.8    | 8.6  | 6.2  | 28               | 0.19              | 0.38                       | 0.11        | 1.8                                                        | 2.6        | 0.20                                               |                                                  |                                             |       |
| A002      | 11,745    | 161    | 0.29  | 0.19   | 0.44 | 0.64 | 2.1              | 0.011             | 0.025                      | 0.012       | 0.31                                                       | 0.39       | 0.062                                              |                                                  |                                             |       |
| A003      | 54,135    | 741    | 1.3   | 0.88   | 2.0  | 2.9  | 9.7              | 0.051             | 0.12                       | 0.055       | 1.4                                                        | 1.8        | 0.29                                               |                                                  |                                             | L     |
| A004      | 154,076   | 2,108  | 3.8   | 2.5    | 5.8  | 8.4  | Multi-<br>Family |                   | d Phospho                  | rus (lb/acr | e)                                                         | <u>Dis</u> | solved Coppe                                       | r (lb/acre)                                      |                                             |       |
| A005      | 974,930   | 13,341 | 24    | 16     | 37   | 53   | Residenti<br>al  |                   |                            |             |                                                            |            |                                                    |                                                  | Multi-                                      |       |
| A006      | 1,202,661 | 15,926 | 30    | 21     | 44   | 65   | 0.52             |                   |                            | 0           | pen Space                                                  |            |                                                    |                                                  | Family<br>sidential                         |       |
| A007      | 1,018,199 | 12,025 | 25    | 17     | 45   | 51   |                  |                   |                            | ulture      | 0.14                                                       |            | ransportati                                        |                                                  | 0.019<br>Agriculture                        |       |
| A008      | 266,112   | 3,642  | 6.5   | 4.3    | 10.0 | 14   |                  |                   |                            |             | Single-                                                    |            | on                                                 |                                                  | _0.014                                      |       |
| A009      | 1,658,909 | 15,102 | 36    | 26     | 73   | 95   |                  |                   |                            |             | Family<br>Residential                                      |            | 0.12                                               |                                                  | Open<br>Space                               |       |
| A010      | 1,295,413 | 8,872  | 28    | 21     | 60   | 71   |                  | Transportati      |                            |             | 0.62                                                       |            |                                                    |                                                  | 0.00094                                     |       |
| A011      | 2,966,625 | 27,807 | 63    | 46     | 119  | 155  |                  | on<br>2.1         |                            | Commercia   |                                                            |            |                                                    |                                                  |                                             |       |
|           |           |        |       |        |      |      |                  | <u>Dissolv</u>    | ed Zinc (lb                | Multi-F     | Agriculture<br>0.025<br>amily                              | Fe         | cal Coliform (                                     | 10^12 MPI                                        | N/acre)                                     |       |
|           |           |        |       |        |      |      | Educa<br>0.1     |                   | Transportati<br>on<br>0.83 | Reside      | Open<br>Space<br>0.044<br>Single-<br>Family<br>Residential | h          | ndustrial<br>0.3                                   | Education<br>0.083<br>Multi-Fr<br>Resider<br>0.1 | ntial                                       |       |
|           |           |        |       |        |      |      |                  | Industrial<br>1.5 |                            | 0.54        |                                                            |            | mmercial<br>0.088 Singl<br>Fami<br>Residen<br>0.1- | le-<br>ily<br>ntial                              | Agricultur<br>0.071<br>Open Space<br>0.0034 | e     |
|           |           |        |       |        |      |      |                  |                   |                            |             |                                                            |            | 32                                                 |                                                  |                                             |       |

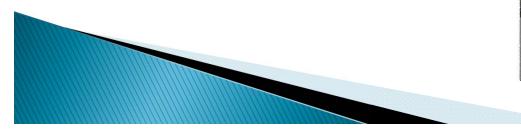

# Watershed Loads

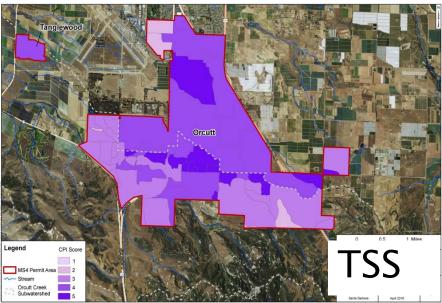

| Area                    | Runoff      | TSS       | Tot P  | Diss P | NH3    | NO3     | TKN    | Diss Cu | Tot Cu | Tot Pb | Diss Zn | Tot Zn | Fecal Col. |
|-------------------------|-------------|-----------|--------|--------|--------|---------|--------|---------|--------|--------|---------|--------|------------|
|                         | cu ft       | lb        | lb     | lb     | lb     | lb      | lb     | lb      | lb     | lb     | lb      | lb     | 10^12 MPN  |
| Goleta MS4 Area         | 110,000,000 | 950,000   | 2,700  | 2,000  | 4,300  | 7,800   | 18,000 | 87      | 190    | 72     | 1,100   | 1,500  | 320        |
| Other MS4 Permit Areas  | 230,000,000 | 1,650,000 | 6,900  | 5,300  | 7,700  | 19,200  | 36,000 | 223     | 410    | 138    | 1,600   | 2,400  | 680        |
| Agriculture*            | 42,000,000  | 2,600,000 | 8,700  | 3,700  | 4,300  | 90,000  | 19,000 | 59      | 260    | 79     | 100     | 720    | 290        |
| Open Space <sup>*</sup> | 100.000.000 | 1.400.000 | 760    | 570    | 700    | 7,400   | 6,100  | 3.8     | 67     | 19     | 180     | 170    | 14         |
| Caltrans                | 17,000,000  | 81,000    | 710    | 580    | 380    | 770     | 1,900  | 34      | 54     | 9.6    | 230     | 300    | 7.9        |
| IGP Parcels             | 22,000,000  | 280,000   | 500    | 340    | 800    | 1,200   | 3,700  | 19      | 44     | 21     | 520     | 660    | 100        |
| Other*                  | 57,000,000  | 270,000   | 1,700  | 1,400  | 1,600  | 2,300   | 8,900  | 63      | 110    | 38     | 470     | 680    | 170        |
| Total Watershed         | 578,000,000 | 7,331,000 | 21,970 | 13,890 | 19,780 | 128,670 | 93,600 | 489     | 1,135  | 377    | 4,200   | 6,430  | 1,582      |

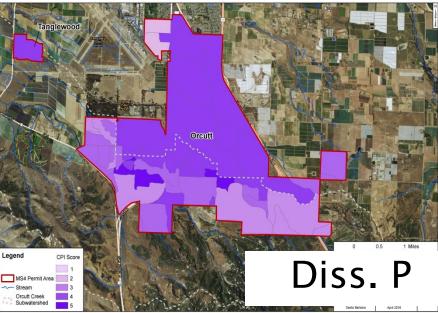

Land Use Types Can distinguish other permitted discharges i.e. ag, industrial (IGP) and Caltrans

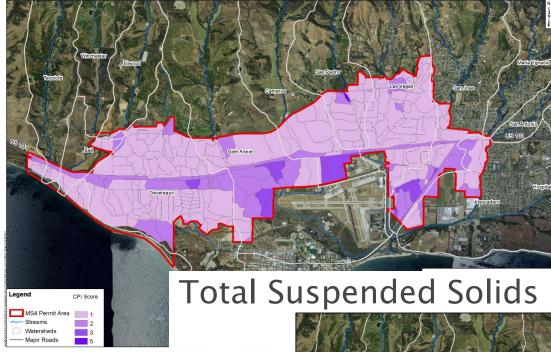




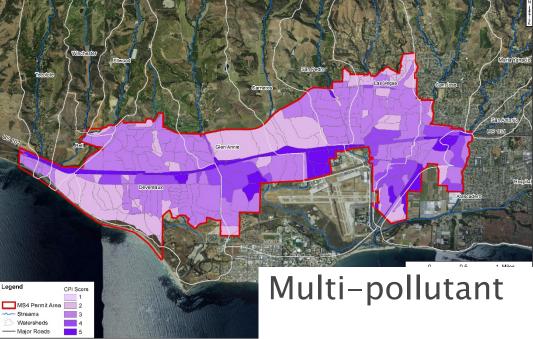





## Catchment Prioritization Index (CPI)












"Multi-Pollutant" Based on pollutant weighting

- TMDL
- 303(d) listings
- Pollutants expected to exceed WQOs



# **BMP Reductions**

#### Table 7. BMP Reductions (Additional BMPs may be added to the next empty row)

\*Note: units shown under pollutants represent concentration. Unit reductions are in units specified in Table 2 and percent reductions are in %.

|                                                                                            | Reduction                                                               |        | Volume  | TSS  | Tot P | Diss P | NH3  | NO3  | ткл  | Diss<br>Cu | Tot Cu | Tot Pb                          | Tot Pb Diss Zn Tot Zr |      | n Fecal<br>Col. | Pollut<br>ant | Pollut<br>ant | Pollu<br>ant |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------|---------|------|-------|--------|------|------|------|------------|--------|---------------------------------|-----------------------|------|-----------------|---------------|---------------|--------------|
| ВМР Туре                                                                                   | Method*                                                                 |        | cu ft   | mg/L | mg/L  | mg/L   | mg/L | mg/L | mg/L | ug/L       | ug/L   | ug/L                            | ug/L                  | ug/L | #/100<br>mL     | unit          | unit          | uni          |
| 5th – Redevelopment                                                                        |                                                                         |        |         |      |       |        |      |      |      |            |        |                                 |                       |      |                 |               |               |              |
| 100% Infiltration)                                                                         | E                                                                       | 89%    | 100%    | 18.1 | 0.14  | 0.07   | 0.18 | 0.37 | 0.98 | 8.3        | 8.8    | 4.2                             | 34.7                  | 37.6 | 5,890           |               |               |              |
| 5th – Redevelopment                                                                        |                                                                         |        |         |      |       |        |      |      |      |            |        |                                 |                       |      |                 |               |               |              |
| 50% Infiltration)                                                                          | E                                                                       | 89%    | 50%     | 18.1 | 0.14  | 0.07   | 0.18 | 0.37 | 0.98 | 8.3        | 8.8    | 4.2                             | 34.7                  | 37.6 | 5,890           |               |               |              |
| 5th – Redevelopment                                                                        |                                                                         |        |         |      |       |        |      |      |      |            |        |                                 |                       |      |                 |               |               |              |
| 100% Treatment)                                                                            | E                                                                       | 89%    | 0%      | 18.1 | 0.14  | 0.07   | 0.18 | 0.37 | 0.98 | 8.3        | 8.8    | 4.2                             | 34.7                  | 37.6 | 5,890           |               |               |              |
| 5th – Redevelopment                                                                        | _                                                                       |        |         |      |       |        |      |      |      |            |        |                                 |                       |      |                 |               |               |              |
| 100% Infiltration)<br>Trake Pad Copper Phase-out                                           | E                                                                       | 100%   | 100%    | 18.1 | 0.14  | 0.07   | 0.18 | 0.37 | 0.98 | 8.3        | 8.8    | 4.2                             | 34.7                  | 37.6 | 5,890           |               |               |              |
| (CBSM)<br>Other Non-structural Bi<br>(WAAP BMPs - Tanglev.<br>Orcutt only)<br>Orcutt only) | 4,000<br>3,500<br>3,000<br>2,500<br>2,000<br>1,500<br>1,000<br>500<br>0 | 3,     | .450    |      | 3     | 3,051  |      |      | 2,74 | 13         |        | Final Load Reduction (lb) = 710 |                       |      |                 |               |               |              |
|                                                                                            | 0                                                                       | Bacali | ineLoad |      |       | 2025   |      |      | 203  | -          |        |                                 |                       |      |                 |               |               |              |

# Future LPR Model Uses

### Existing/Planned

- Prioritize catchments (or land uses) for MS4 cleaning, street sweeping, outreach, structural BMP placement, etc.
- Support BMP inventory, including BMP assessment results to update catchment prioritization, to best inform BMP placement
- Use maps as communication tools for public, management, elected officials, etc.

### Potential Future

- Prioritize BMPs e.g. compare relative cost-benefit of different BMP options (requires incorporation of cost data)
- Support grant applications and/or Stormwater Resource Plans
  - Can be used to quantify water supply benefits of structural BMPs
- Use maps as educational tools for public, PW managers, and/or elected officials
- Forecast long-term cost of compliance (with TMDL WLAs, etc.)

Please send in your questions using the Q&A box in the webinar panel to "Host and Presenter".

All participants are muted throughout the webinar.

QUESTIONS

# Year 3: Program Effectiveness Assessment Results

MS4 Non-Traditional Phase II Permittee

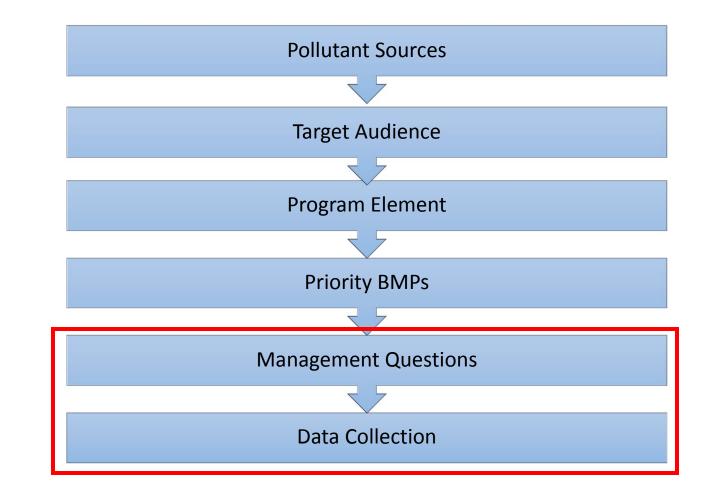
Lisa Moretti, P.E., QSD, QISP TOR University of California, Davis Environmental Health & Safety



### Overview

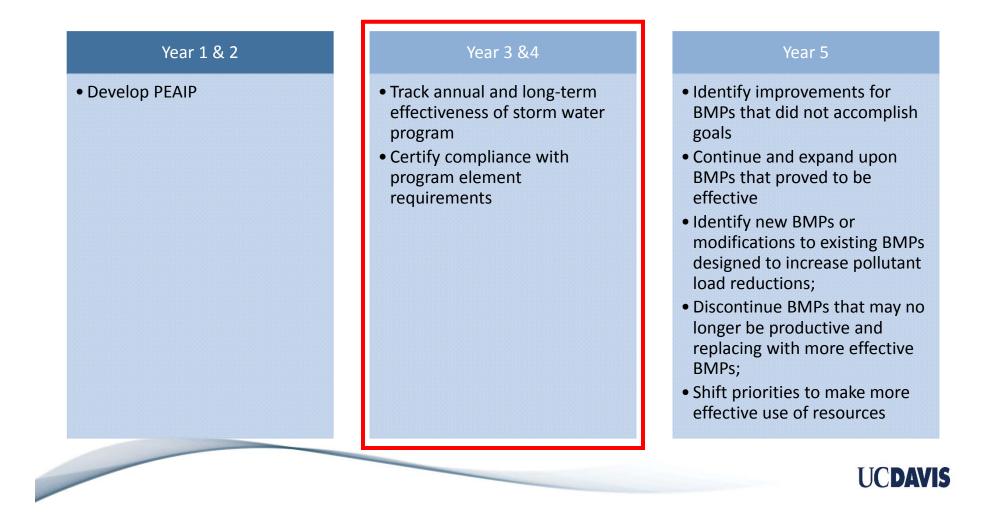


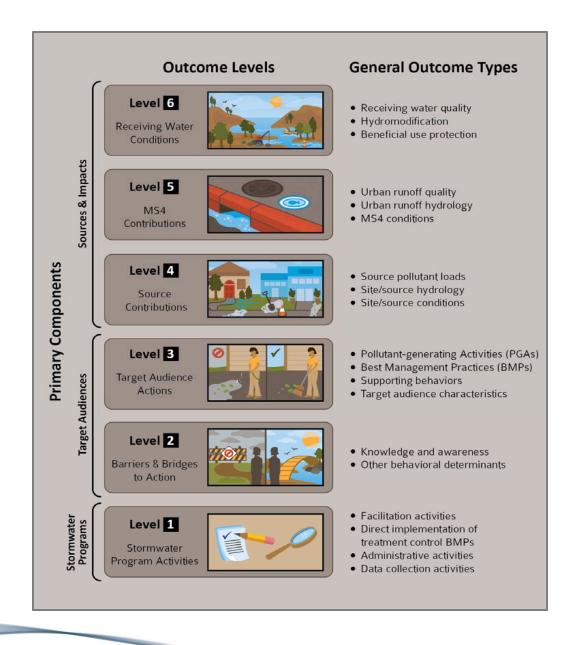
- Requirements and Goals for Phase II MS4 Permittee Program Effectiveness Assessment and Improvement Plan (PEAIP)
- PEAIP Framework
- Education and Outreach Program Assessment
- Permitee Operations and Maintenance Activities Assessment
- Post-Construction Assessment
- Summary




# Program Effectiveness Assessment Goals (F.5.h.1)

- Adaptively manage storm water program
- Improve program effectiveness
- Reduce pollutants of concern
- Achieve the Maximum Extent Practicable (MEP) standard
- Protect water quality
- Document the Permittee's compliance with permit conditions





### Program Effectiveness Assessment Framework





### Non-Traditional Phase II Program Effectiveness Assessment Timeline







### Program Effectiveness Assessment Framework

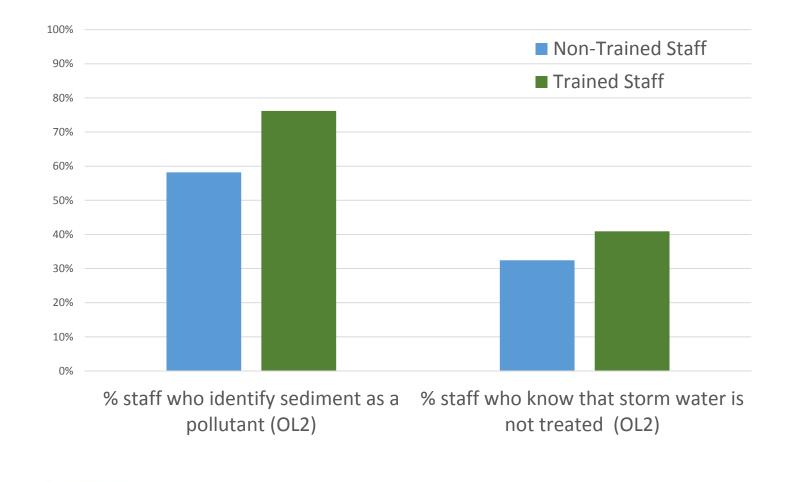
| Low                                                                                       | Medium                                               | High                                                                                                |
|-------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| <ul> <li>Outcome Level<br/>1 results only</li> </ul>                                      | <ul> <li>Outcome Level<br/>2 results</li> </ul>      | <ul> <li>Outcome Level<br/>3-4 results</li> </ul>                                                   |
| <ul> <li>Implemented,<br/>but no<br/>evidence that<br/>there was an<br/>impact</li> </ul> | <ul> <li>Results in a change of awareness</li> </ul> | <ul> <li>Results in a<br/>change in<br/>behaviors or<br/>reduction in<br/>pollutant load</li> </ul> |



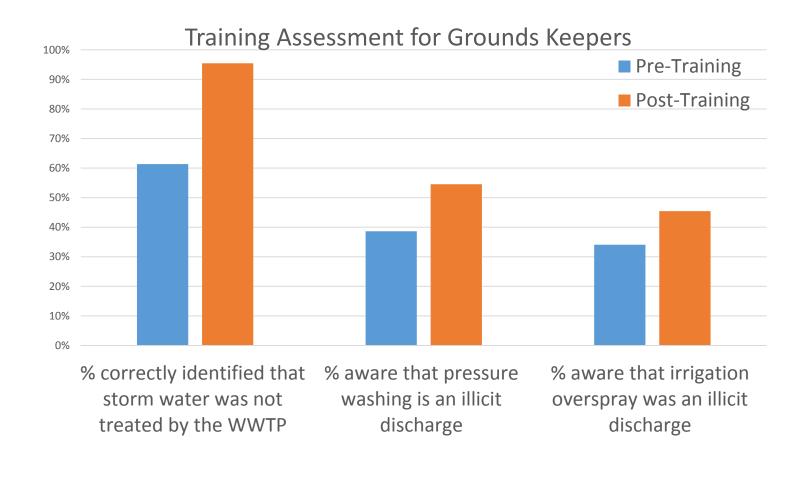


### F.5.b Education and Outreach

## Management Questions:


- How effective is training at increasing staff awareness of pollutants of concern and BMPs to reduce storm water pollution?
- Is training effective at changing behaviors?
- Are trained staff reporting illicit discharges?

### Goals:


- Trained staff should be able to identify trash and sediment as pollutants (OL2)
- Trained staff should know that storm water is not treated prior to discharge (OL2)
- Trained staff should be able to identify illicit discharges, report illicit discharges, and prevent illicit discharges (OL2&3)
- Trained staff should be properly implementing BMPs (OL3)



### Staff Survey Results











## **Training Assessment**

- Training does result in an increase in awareness
- Training has resulted in an increase in reports of illicit discharges
- There were no repeat illicit discharges. One illicit discharge report was from a trained employee.

### • Overall: Medium Effectiveness

- Increase in awareness achieved (OL2)
- Some evidence that there is change in behavior (OL3)
- No evidence of reduction in pollutant loads (OL4) due to limits in data collection

### • Modifications:

 Collect data to document evidence of change in behavior and implementation of BMPs



# F.5.f. 8 Permitee Operations and Maintenance Activities

"Permittee shall assess their O&M activities for potential to discharge pollutants in storm water and inspect all BMPs on a quarterly basis"

### Management Questions:

- Is staff training resulting in effective implementation of BMPs?
- Are BMP implementation resulting in decrease in pollutant loads?

### Goals:

- Trained staff should be properly implementing BMPs (OL3)
- Reduction in required corrective actions in Quarterly BMP Assessment (OL4)
- 100 % of corrective actions with identified follow-up actions (OL4)
- Reduction in illicit discharges from trained staff (OL4)



# F.5.f. 8 Permitee Operations and Maintenance Activities

| Quarterly Supervisor Assessments (2016 Q1 & Q | 2)   |
|-----------------------------------------------|------|
| Corrective Actions Related to Sediment        | 6    |
| Corrective Actions Related to Trash           | 4    |
| % of Corrective Action Addressed*             | 100% |
| Decrease in corrective actions (Q1 to Q2)     | 57%  |
|                                               |      |

\* Corrective actions that require capital investment are excluded if items have been budgeted for and scheduled

# Illicit Discharge Reports Authorized NSWD 45% Illicit Discharges from Trained Employees 1 of 6 reports



# F.5.f. 8 Permitee Operations and Maintenance Activities

- Trained staff are implementing BMPs
- Corrective actions are focused on routine items (sediment collection, litter)
- Implementation of quarterly inspection resulted in decreases in corrective actions.
- Overall: High Effectiveness
  - Evidence of change in behavior (OL3)
  - Implementation of corrective actions and BMPs indicates reduction in pollutant load (OL4)
- Modifications:
  - Continue to collect data on implementation of BMPs, evaluate by areas and departments.

UCDAVIS

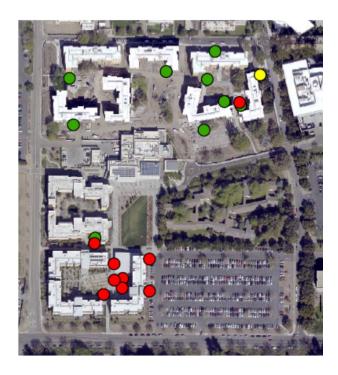
### F.5.g.4 O&M of Post Construction BMPs

"The Permittee shall ensure that systems and hydromodification controls installed at projects are properly operated and maintained for the life of the projects."

### Management Questions:

 How effective are treatment systems at preventing POCs from entering the storm sewer system?

### Goals:


- 100% of required O&M of treatment systems conducted (OL4)
- 100% of treatment systems functioning as designed (OL4)
- Reduction in hydromodification impacts due to post-construction BMPs (OL5/6)





## F.5.g.4 O&M of Post Construction BMPs

- No regulated post-construction systems installed on campus
- Assessment of implemented post-construction systems have shown reduction in effectiveness over time
- Goals for Years 4 & 5:
  - Assessment of O&M protocols to improve effectiveness over time







### Lessons Being Learned

- Difficulties of collection and interpretation of data
- Achieving Year 5 Goals:
  - Identifying which BMPs ineffective and why
  - Evaluation of resource allocation (e.g. storm drain labeling)
- Balancing quantitative and qualitative data



**Contact Information** 

Lisa Moretti, UC Davis EH&S 530-752-0177 Imoretti@ucdavis.edu





Please send in your questions using the Q&A box in the webinar panel to "Host and Presenter".

All participants are muted throughout the webinar.

QUESTIONS



# CASQA Program Effectiveness Webinar

Orange County Stormwater Program's Headline Environmental Indicators

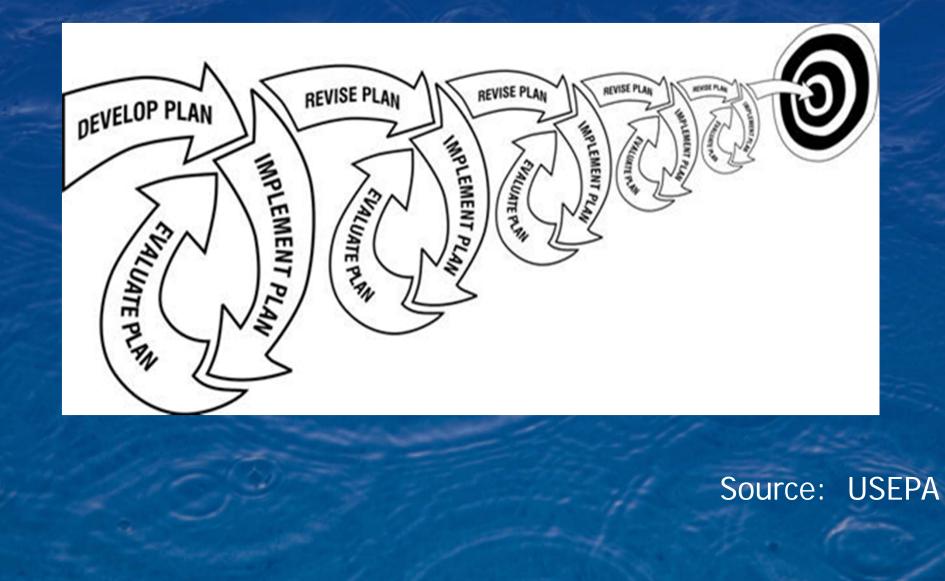
Richard Boon, County Of Orange

# Overview

Background

Orange County
State Of The Environment Report

Headline Environmental Indicators


Receiving Waters & MS4
Target Audiences

Summary

# **Orange County**



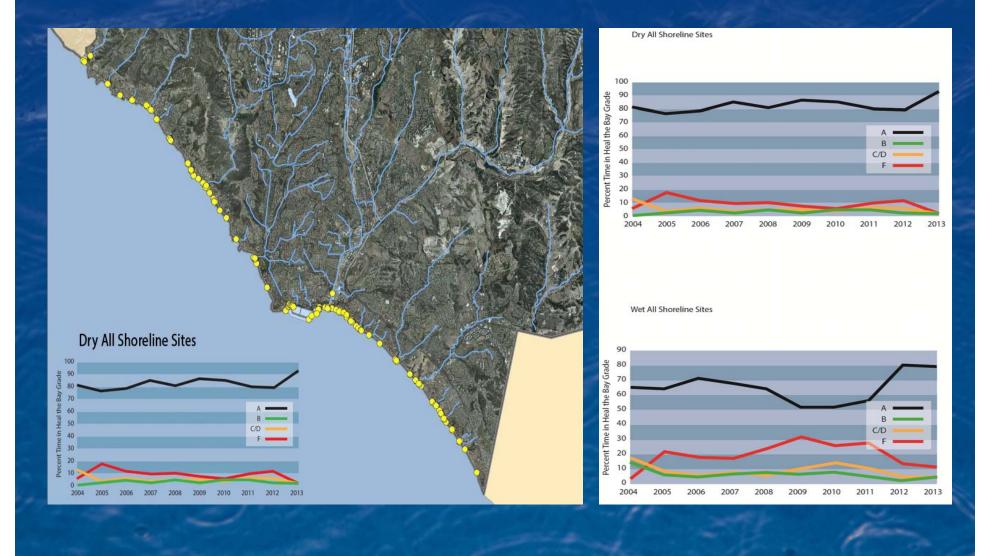
## **MS4** Permitting



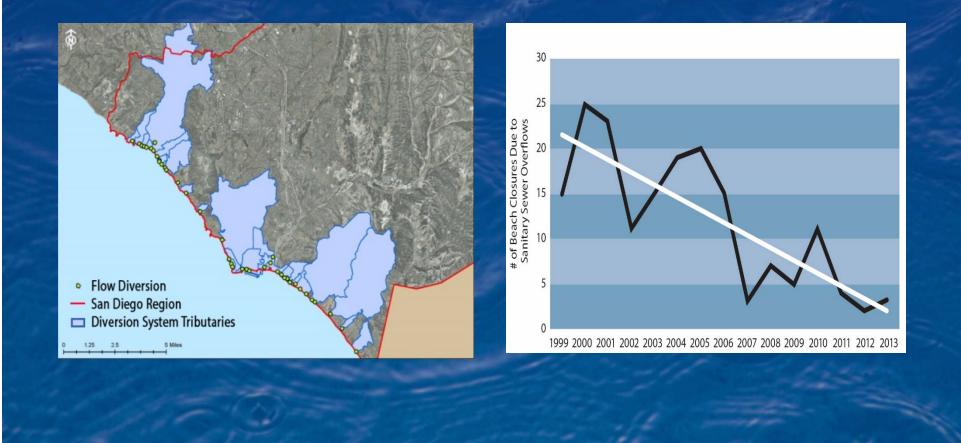
### **State Of Environment**

### 2014 REPORT OF WASTE DISCHARGE SAN DIEGO REGION STATE OF THE ENVIRONMENT




ORANGE COUNTY STORMWATER PROGRAM

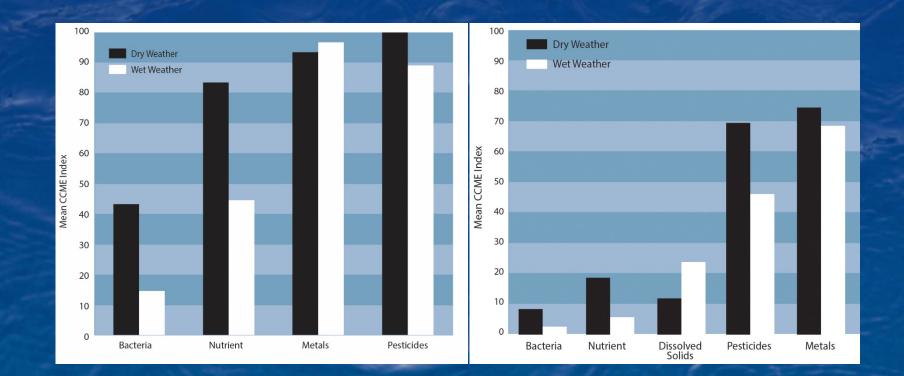
### **Headline Environmental Indicators**


The purpose of environmental headline indicators is to provide simple and clear information to decision-makers and the general public about progress in environmental policies and the key factors determining the state of the environment and whether we are moving towards environmental sustainability. European Environment Agency, 2016



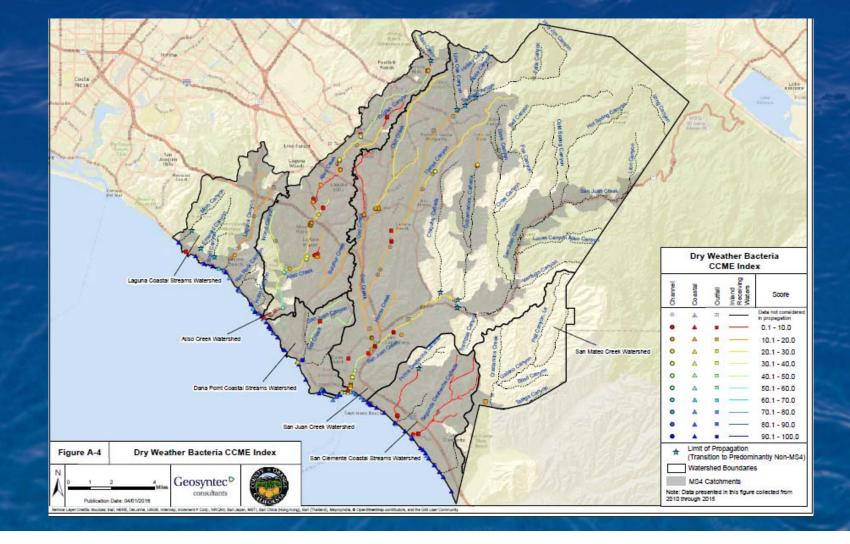
### **Beneficial Use Protection**



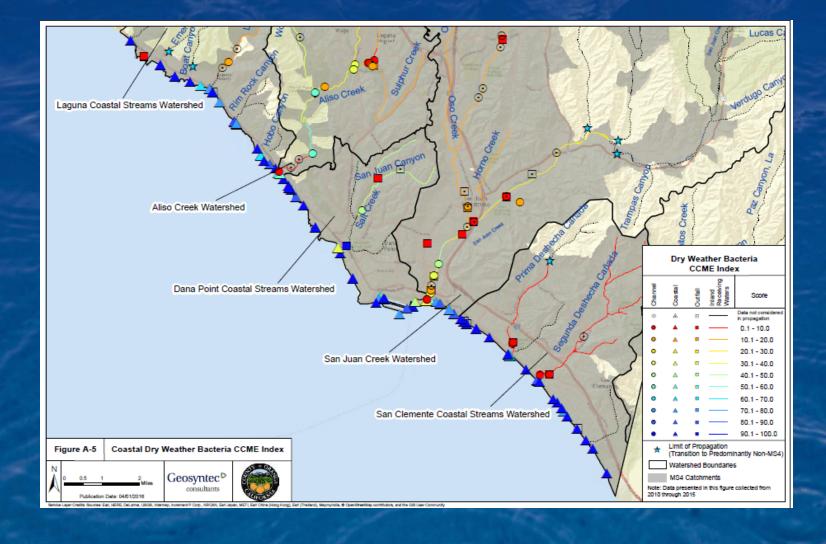

### **Beneficial Use Protection**



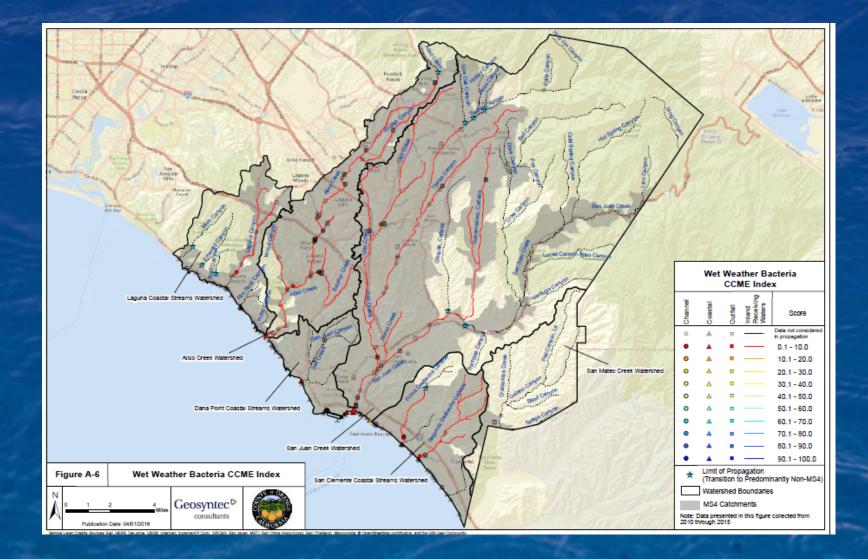
### **Receiving Waters: Water Quality Index**


- The CCME WQI provides a mathematical framework for assessing ambient water quality conditions relative to water quality objectives.
- Index is based on a combination of three factors:
  - The numbers of variables whose objectives are not met (Scope)
  - The frequency with which the objectives are not met (*Frequency*)
  - The amount by which the objectives are not met (*Amplitude*)
- Provides ranking based upon score (1-100)
  - Excellent (95-100 Conditions close to pristine)
  - Good (80-94 Minor degree of threat)
  - Fair (65-79 Occasional impairment)
  - Marginal (45-64 Water quality is frequently threatened)
  - Poor (0-44 Water quality is always impaired)
    - » Source CCME, 2001

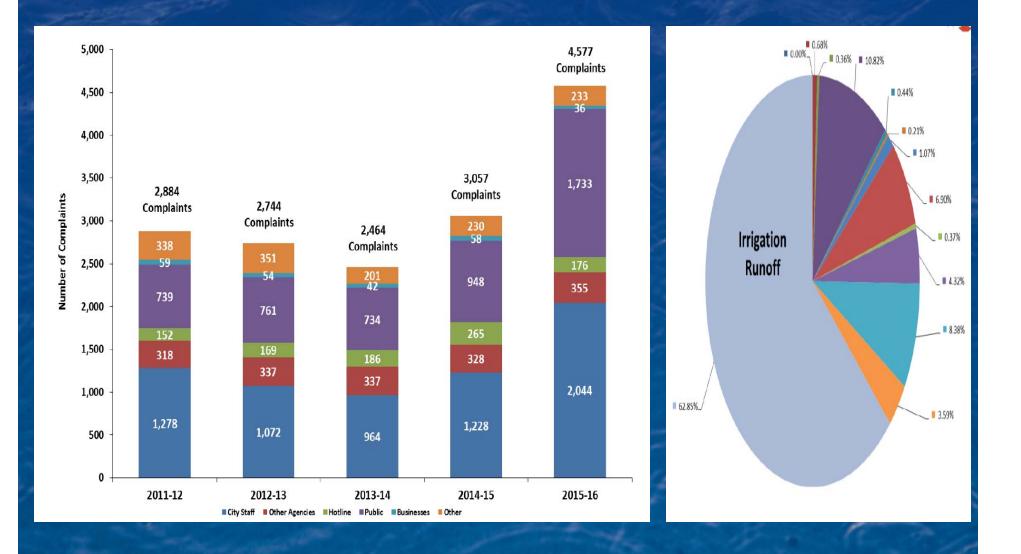
### **Receiving Waters**




Overall exceedance index for core monitoring constituents at coastal discharge points (2003-2013) Overall exceedance index for core monitoring constituents in inland Channels (2003-2013)


## **Urban Runoff Quality – Dry Weather**

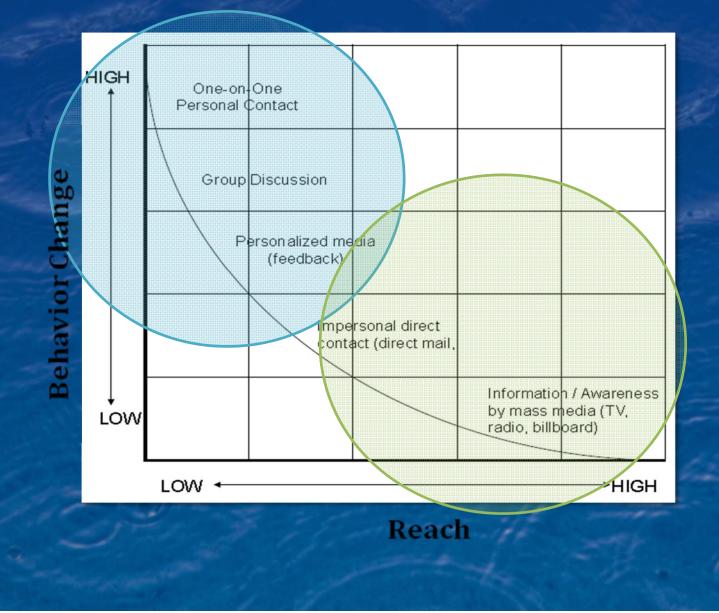



# Surfzone – Dry Weather



#### **Urban Runoff – Wet Weather**




#### **Source Contributions – ID/IC**



#### **Pollutant Generating Activities/BMPs**

| 100% - |                                                                                                                                                                                                   |                        |                        |                                              |                      |                   |                   |      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------------------------------|----------------------|-------------------|-------------------|------|
| 90% -  | Please tell me if you have already done the following, or if you would be willing or not willing to do each of<br>the following in order to help reduce water run-off pollution in Orange County. |                        |                        |                                              |                      |                   |                   |      |
| 80% -  | •Usi                                                                                                                                                                                              |                        |                        | ot a hose, to cl                             | ean walkways         | and               |                   |      |
| 70% -  | •Adj                                                                                                                                                                                              |                        |                        | er watering you<br>home and taki             |                      | rash              |                   |      |
| 60% -  | •Kee                                                                                                                                                                                              |                        |                        |                                              |                      |                   | g them on your la | wn   |
| 50% -  | •Picl                                                                                                                                                                                             | king up waste          | and droppings          | fertilizers and from your pet                |                      |                   |                   |      |
| 40% -  | •Disposing of household chemicals and automobile oil and other fluids properly by ensuring they go to a recycling or hazardous waste collection center                                            |                        |                        |                                              |                      |                   |                   |      |
| 30% -  |                                                                                                                                                                                                   | <sup>25</sup> 24 22 23 | 18 19 20 <sup>22</sup> |                                              |                      |                   |                   |      |
| 20% -  | 13 <sup>15</sup><br>11 <sub>10</sub>                                                                                                                                                              |                        |                        | <sup>15</sup> <sub>11</sub> 13 <sup>15</sup> | 9 9 <sup>11</sup> 10 | 9 0 0 0           |                   | o 10 |
| 10% -  |                                                                                                                                                                                                   |                        |                        |                                              |                      | 9888              | 5665              | 6 7  |
| 0% -   |                                                                                                                                                                                                   |                        |                        |                                              |                      |                   |                   |      |
|        | Seven<br>activities                                                                                                                                                                               | Six<br>activities      | Five<br>activities     | Four<br>activities                           | Three<br>activities  | Two<br>activities | One activity      | None |
|        |                                                                                                                                                                                                   | 201                    | 2 🗆 2009               | 2005                                         | 2003                 |                   |                   |      |

#### Awareness Vs. Engagement



#### **Public Engagement: Approach**





Google Put yourself on the map! To help stop overwatering in my neighborhood, I have.... \*

let my lawn go bro

**OVERWATERING!** 

ARE YOU?

#### Summary

Presented comprehensive picture of state of environment and management actions - Yes

Established basis for broadening participation and creating common purpose - Partially

## **For More Information**

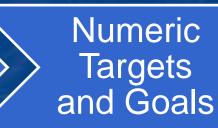
State Of The Environment: <a href="http://ocwatersheds.com/">http://ocwatersheds.com/</a> Overwatering Is Out: <a href="http://www.overwateringisout.org/">http://www.overwateringisout.org/</a> Richard Boon: <a href="mailto:richard.boon@ocpw.ocgov.com">richard.boon@ocpw.ocgov.com</a>



Please send in your questions using the Q&A box in the webinar panel to "Host and Presenter".

All participants are muted throughout the webinar.

QUESTIONS




# Non-Structural BMPs How do they Measure Up?

Paul Hartman, Larry Walker Associates November 2, 2016

### **Background and Purpose**





Control Measures

TMDLs and other Regulatory Drivers
Translate into Numeric Targets or Goals
Management Approaches to meet the Targets/Goals

# Why do we need to quantify?

- Watershed Plans 10% reduction (assumed)
- Numeric Targets and Goals
- Non-structural BMPs might get us there!

### **Management Questions**

How far will NSBMPs get us?
How can we quantify the benefits?
Where should we put our efforts?
What programs are most effective – from a load reduction and a cost standpoint?

# Estimating the Effectiveness of NSBMPs Institutional Programs – Minimum of Six Elements – Multiple Strategies within Each



 Assuming 5-10% effectiveness for new programs

## Approach

New and Enhanced BMPs
Effectiveness Ratings
Apply Effectiveness Ratings to Modeled Loads (if available)
Implementation Schedule and Cost Information

### **New and Enhanced BMPs**

Not "business as usual"
Above the Normal Program Elements
Quantify the Incremental Improvements

#### Effectiveness Rating =

Participation Factor X Loading Factor

- Amount of the target audience who would implement the BMP?
- Outreach to residents
   → 5-10% of them changing
- New policy requiring a change to municipal maintenance practices

   closer to 100%

 How much of the pollutant load would be reduced if 100% of the target audience changed their behavior?

 Proper pesticide application → 50% vs. stopped applying, then the loading factor would be 100%.

#### **Effectiveness Ratings**

Effectiveness Assessments
Literature Information
Best Professional Judgement
Engage Staff
Make Conservative Assumptions

# Estimating the Effectiveness of NSBMPs

**Evaluate Sources** 

**Calculate/Estimate Loads** 

**Develop Programs** 

**Calculate Effectiveness Rating** 

**Participation Factor** 

Χ

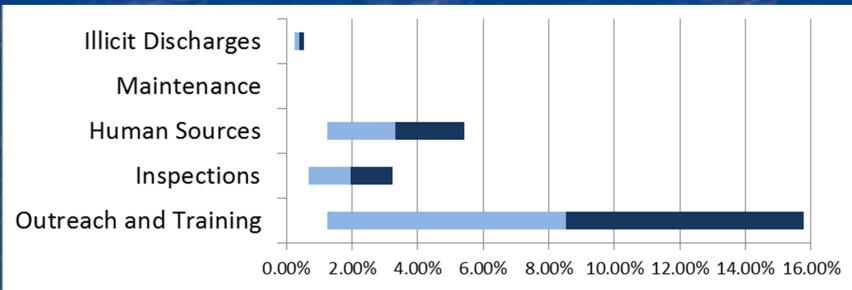
**Loading Factor** 

# Effectiveness Rating Example

#### **Participation Factor X Loading Factor = Effectiveness Rating**

| Program<br>Element        | Strategy                                                                | Participation<br>Factor | Loading<br>Factor | Effectiveness<br>Rating |
|---------------------------|-------------------------------------------------------------------------|-------------------------|-------------------|-------------------------|
| Commercial<br>Inspections | Activity specific outreach to businesses.                               | 10 – 20%                | 75%               | 7.5 – 15%               |
|                           | Target areas<br>where frequent<br>dry weather runoff<br>is observed.    | 50%                     | 25%               | 12.5%                   |
|                           | Increase<br>presence and<br>enforcement at<br>sites with<br>violations. | 60 - 80%                | 75%               | 45 – 60%                |

# Effectiveness Rating Example (cont'd)


#### Effectiveness Rating X Source Load = Estimated Load Reduction

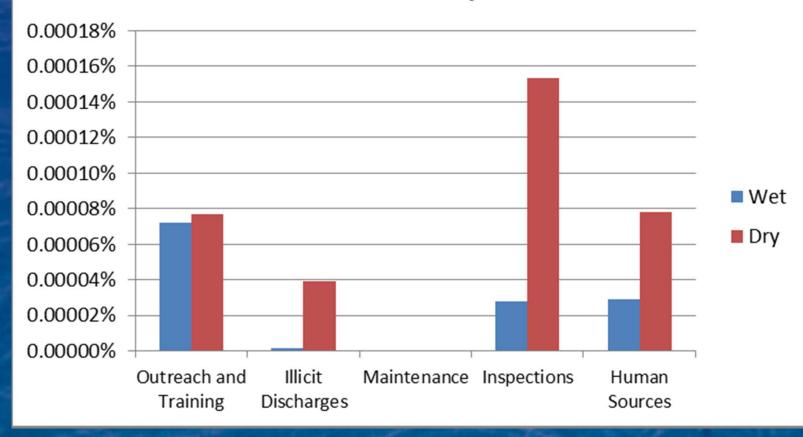
| Program<br>Element                 | Strategy                                                            | Effectiveness<br>Rating | Source<br>Load | Estimated<br>Load<br>Reduction |  |
|------------------------------------|---------------------------------------------------------------------|-------------------------|----------------|--------------------------------|--|
| Commercial<br>Inspections          | Activity specific<br>outreach to<br>businesses                      | 7.5 – 15%               | 80%            | 9%                             |  |
|                                    | Target areas<br>where frequent dry<br>weather runoff is<br>observed | 12.5%                   | 25%            | 3%                             |  |
|                                    | Increase presence<br>and enforcement<br>at sites with<br>violations | 45 – 60%                | 75%            | 39%                            |  |
| Load Reduction for Program Element |                                                                     |                         |                |                                |  |

# Programmatic Results (examples)

| Program Element           | Effectiveness Range |
|---------------------------|---------------------|
| Outreach                  | 2 - 20%             |
| Industrial and Commercial | 8 - 30%             |
| Construction              | 20 – 72%            |
| Municipal                 | 2 – 72%             |
| ICID                      | 5 – 45%             |

# Programmatic Results (examples)






# **Overall Results (examples)**

| Constituent      | Condition | Estimated<br>Range of<br>Effectiveness | Average |
|------------------|-----------|----------------------------------------|---------|
| Flow (nutrients) | Dry       | 35 – 75%                               | 55%     |
| Bacteria         | Wet       | 12 – 33%                               | 22%     |
| Zinc             | Both      | 6 – 45%                                | 25%     |
| Sediment         | Wet       | 5 – 55%                                | 28%     |

# Benefits and Costs (examples)

#### **Percent Reduction per Dollar**



### Conclusions

- Opportunities to focus programs exist, but are still evolving
- Effectiveness assessments are becoming more important (PEA, monitoring)
- Ideally, we will learn from this first step and provide:
  - More flexibility
  - More knowledge
  - Better, more evolved programs

## **Questions?**

Paul Hartman, Senior Scientist Larry Walker Associates paulh@lwa.com (760) 730-9446 Please send in your questions using the Q&A box in the webinar panel to "Host and Presenter".

All participants are muted throughout the webinar.

QUESTIONS

Program Effectiveness Assessment Thank you for Attending!

## **CASQA WEBINAR**