An Introduction to Strategically Planning and Assessing Stormwater Programs

CASQA Webinar June 22, 2015

Jon Van Rhyn – County of San Diego David Pohl – ESA, San Diego, CA Karen Ashby - Larry Walker Associates, Davis, CA

Instructions for Today

- Participants will be muted
- Asking questions send via chat

Topics

- Background
- Key Concepts
- Introduction to Outcome Types
- Introduction to Strategic Planning for Stormwater Programs
- Case Studies

Background

A Brief History of Recent Effectiveness Assessment Work

MAY 2007

CALIFORNIA STORMWATER QUALITY ASSOCIATION

Municipal Stormwater Program Effectiveness Assessment Guidance

CASQA (2007)

SWRCB (2011)

Guidance for Assessing the Effectiveness of Municipal Storm Water Programs and

L rurpore of this Guidance Document The purpose of this guidance document is to assist the State Water Resources Control Board (Totte Water Board) and Regional Water Quality Control Boards (Regional Water Board) (collectively, Water Board) in assessing the effectiveness of the storm water programs being implemented by local agencies in compliance with NPDES permits

programs being implemented by local agencies in compliance with NPDES permits issued for discharge from municajo persente transavery system (M-S). Is embidised standardized concepts and terminology, presents a general framework for conducting permit conditions for assessment. This document does not, and is not attained by provide puidance on substantive implementation requirements to be included in municipal stem accordance with the requirements of 200 (Attachment A), this document frame. In accordance with the requirements of 200 (Attachment A), this document frame and the requirements of 200 (Attachment A), this document frame that use of quantification measures for evaluating the effectivenesis of municipal stems write programs and growthe for the evaluation of all of the following.

Computance with worm water permanang requirements, "Reduction of pollutant loads from pollution sources; "Reductions of pollutant so stream erosion due to storm water discharge; and "Improvements in the quality of receiving water in accordance with water quality standards."

While the primary purpose of this document is to provide Water Board staff with the tools needed to assess effectiveness, storm water program managers within local agencies can also use the principles found in this document to assess the effectiveness of their meanum invariant time.

II. Incredencies II. Collection, there are currently 21 municipal storm water permits for large and medium M54s (Base 1M54 spermit). Collectively, the Flane 1M54 permits address the atom water darkages from prostansity 300 collections, constrate and persial district. In 2005, the State Water Board adopted a general storm water permit for small municipal storm were tryinous (Parket II M54) permits which diddence municipal atoms with populations leves than 100,000 that are enthe located winthin a commo-defined¹ withouted are? or designated as subject to permit Journaux to the terms of the Flanes II M54 permit.

The MS4 permits require the implementation of programs that have many substantive elements, including, but not limited to public education and outwock, commercial, mathrial and contruction sartivities mapped to the state of the state of

"Compliance with storm water permitting requirements

program imple

Introduction

Purpose of this Guidance Document

CASQA (2015)

Planning for and Assessing

the Effectiveness of

ASO

CALIFORNIA STORMWATER QUALITY ASSOCIATION

Stormwater Programs

Attachment 3: Scope of Work and Schedule

A Web-based Portal for Statewide Coordination of Municipal Stormwater Program Effectiveness Assessment Data and Information

Overview

The purpose of this project is to further the development and utilization of stormwater program effectiveness assessment methods and approaches. Its defining feature is a Stormwater Effectiveness Assessment Web Portal that will be designed using input gathered during early data gathering tasks, and that will establish a vehicle for bringing managers and other interested parties together toward the ongoing improvement of methods and approaches across a variety of program areas (e.g., construction, development, municipal, residential, commercial, and industrial). The Web Portal will establish a centralized point where users can obtain updated guidance, share key data and information (sample reports, research, literature, etc.), communicate with each other, and obtain support in planning and assessing their programs. It will be the first site of its kind, and the only one dedicated exclusively to the advancement of stormwater program effectiveness assessment.

The project will be designed specifically to support the use of the State Water Resources Control Board's March 2011 Guidance for Assessing the Effectiveness of Municipal Storm Water Programs and Permits (SWRCB Guidance) completed pursuant to Assembly Bill 739 (Statutes 2007, Chapter 610), and its companion document the May 2007 CASQA Municipal Program Effectiveness Assessment Guidance (CASQA Guidance). These documents represent the most comprehensive and advanced approaches available for assessing municipal stormwater management (or "MS-4") programs in California. The major components and six outcome types constituting this assessment framework are illustrated below in Figure 3-1.

Figure 3.4: Overview of the CASQA / SWRCB Effectiveness Assessment Framework

Prop 84 Grant (2012 - 15)

5

https://www.casqa.org/effectiveness_assessment

- Task 3 CASQA Guidance Manual Update
- Task 4 Assessment of Existing Practices and User Needs
- Task 5 Education and Outread
- Task 6 Project Evaluation

- Task 3 CASQA Guidance Manual Update
- Task 4 Assessment of Existing Practices and User Needs
- Task 5 Education and Out
- Task 6 Project Evaluation

AUGUST 2014

- Task 3 CASQA Guidance Manual Update
- Task 4 Assessment of Existi User Needs
- Task 5 Education/Outreach

Task 6 - Project Evaluation

Program Effectiveness Assessment and Improvement Plan (PEAIP) Framework for Traditional MS4s

JUNE 2015

PERMITTEE NAME

Program Effectiveness Assessment and Improvement Plan

Prenared by

(BF

PERMITTEE DEPARTMENT/DIVISION

This cover is an example that could be customized for your agency

- Task 3 CASQA Guidance Manual Update
- Task 4 Assessment of Existing Practices and User Needs
- Task 5 Education and Outreach
- Task 6 Project Evaluation

Next Steps

Questions?

Key Concepts

Effectiveness assessment consists of the methods and activities that managers use to evaluate how well their programs are working and to identify modifications necessary to improve results.

A Strategic Approach to Planning and Assessing Municipal Stormwater Management Programs

Table of Contents

E	xecutive Summaryii
S	ection 1.0 Introduction and Purpose1-1
s	ection 2.0 Stormwater Management Approach2-1
S	ection 3.0 Introduction to Strategic Planning for Stormwater Management Programs3-1
S	ection 4.0 Source and Impact Strategies4-1
S	ection 5.0 Target Audience Strategies
s	ection 6.0 Program Implementation Strategies6-1
	ection 7.0 Assessment Tools and Strategies7-1
	ection 8.0 Interpretation and Use of Results
Д	ittachments
	A Glossary of Acronyms and Terms
	B Source Profiles
_	C Pollutant Profile Sheets

The Relationship of Planning and Assessment

- Planning provides a road map for assessment
- Assessing "after-the-fact" limits managers' ability to evaluate
- Assessment measures and methods should be identified during planning
- Programs that "plan to assess" increase measurability and effectiveness

Outcomes are measurable endpoints associated with programs, people, and physical systems.

Outcomes are Interrelated

Core Steps in a Structured Planning Process

Key Concept 2 Problem conditions are "causally" linked

Key Concept 3

Relationships between conditions resemble webs more than chains

Key Concept 1 Prioritization is Essential to Strategic Planning

Key Concept 4 Linkages and Relationships exist in different stages of certainty

Questions?

Introduction to Outcome Types

Three Planning and Assessment Elements

First Element Source & Impact Strategies

Level 6 Outcomes

Table 4.2: General Types and Examples of Receiving Water Conditions

Type of Condition	Examples			
Chemical Conditions Constituents in flows (wet, dry, and ambient)	Chemical constituent concentrations or loads (metals, pesticides, nutrients, etc.)			
Constituents in sediments	Metals, pesticides, nutrients, etc.			
Toxicological Conditions (aquatic and sediment; acute and chronic)				
Toxicity from chemical constituents	 Metals, pesticides, nutrients, etc. 			
Toxicity from other stressors	Temperature, turbidity, etc.			
Biological Conditions				
Pathogens and indicators	 Bacterial indictors in wet and dry weather flows Pathogens (bacteria, viruses, protozoa, etc.) in wet and dry weather flows 			
Habitat and communities	 Macro-invertebrate community integrity Biodiversity Algal abundance and diversity Habitat integrity (wetlands, riparian cover, etc.) 			
Physical Conditions				
Physical condition of channels and	Geomorphic conditions			
banks	Erosion and sedimentation			
	Hydromodification			
	Extent and amount of trash			
Flow conditions within channels	 Presence or absence of flow or ponded water Volume, velocities, and durations of flows 			
Other	 pH, temperature, conductivity, dissolved oxygen, turbidity 			

Table 4.3: SWRCB Beneficial Use Designations

Municipal and Domestic Supply (MUN) Uses of water for community, military, or individual water supply systems including, but not limited to, drinking water supply.

Agricultural Supply (AGR) Uses of water for farming, horticulture, or ranching including, but not limited to, irrigation, stock watering, or support of vegetation for range grazing.

Industrial Process Supply (PROC) Uses of water for industrial activities that depend primarily on water quality.

Industrial Service Supply (IND) Uses of water for industrial activities that do not depend primarily on water quality including, but not limited to, mining, cooling water supply, hydraulic conveyance, gravel washing, fire protection, or oil well repressurization.

Ground Water Recharge (GWR) Uses of water for natural or artificial recharge of ground water for purposes of future extraction, maintenance of water quality, or halting of saltwater intrusion into freshwater aquifers.

Freshwater Replenishment (FRSH) Uses of water for natural or artificial maintenance of surface water quantity or quality (e.g., salinity).

Navigation (NAV) Uses of water for shipping, travel, or other transportation by private, military, or commercial vessels.

Hydropower Generation (POW) Uses of water for hydropower generation.

Water Contact Recreation (REC-1) Uses of water for recreational activities involving body contact with water, where ingestion of water is reasonably possible. These uses include, but are not **Cold Freshwater Habitat (COLD)** Uses of water that support of water ecosystems including, but not limited to, preservation of enhancement of aquatic habitats, vegetation, fish, or wildlife, including invertebrates.

Inland Saline Water Habitat (SAL) Uses of water that support saline water ecosystems including, but not limited to, preserv or enhancement of aquatic saline habitats, vegetation, fish, o wildlife, including invertebrates.

Estuarine Habitat (EST) Uses of water that support estuarine ecosystems including, but not limited to, preservation or enhancement of estuarine habitats, vegetation, fish, shellfish, wildlife (e.g., estuarine mammals, waterfowl, shorebirds).

Wetland Habitat (WET) Uses of water that support wetland ecosystems, including, but not limited to, preservation or enhancement of wetland habitats, vegetation, fish, shellfish, wildlife, and other unique wetland functions which enhance v quality, such as providing flood and erosion control, stream be stabilization, and filtration and purification of naturally occurr contaminants.

Marine Habitat (MAR) Uses of water that support marine ecosystems including, but not limited to, preservation or enhancement of marine habitats, vegetation such as kelp, fish shellfish, or wildlife (e.g., marine mammals, shorebirds).

Wildlife Habitat (WILD) Uses of water that support terrestrial ecosystems including, but not limited to, preservation and enhancement of terrestrial habitats, vegetation, wild@@e (e.g., mammals, birds, reptiles, amphibians, invertebrates), or wildl water and food sources

Level 5 Outcomes

Table 4.10: General Types and Examples of MS4 Conditions

Type of Condition	Examples		
Chemical Conditions Constituents in flows (wet, dry, and ambient)	 Chemical constituent concentrations of (metals, pesticides, nutrients, etc.) 	or loads	
Biological Conditions			
Pathogens and indicators	 Bacterial indictors in wet and dry weather flows Pathogens (bacteria, viruses, protozoa, etc.) in wet and dry weather flows 		
Toxicological Conditions Toxicity of discharges from MS4 outfalls	Metals, pesticides, nutrients, etc.		MS4
Physical Conditions Physical condition of MS4 facilities (channels, streets, roads, inlets, outlets, etc.)	 Geomorphic conditions Erosion and sedimentation Structural integrity Extent and amount of trash 	MS4 MS4	Receiving Water
ow conditions within the MS4 and om outfallsPresence or absence, volume, velocities, and durations of flows			
• pH, temperature, conductivity, dissolved oxy turbidity		ed oxygen,	
			31

Level 4 Outcomes

Types of Source Contributions

Type of Contribution	Examples
Materials and Wastes	 Fertilizers Yard waste Paint Automotive fluids (motor oil, brake fluid, etc.) Trash and debris
Pollutants Chemical Constituents	 Metals (e.g., Cd, Cu, Cr, Pb, Ni, Ag, Zn) Pesticides (e.g., organophosphates, pyrethroids) Nutrients (e.g., nitrates, phosphates)
Biological Constituents	 Bacterial indictors (total and fecal coliform, enterococcus, etc.) Pathogens (bacteria, viruses, protozoa, etc.)
Physical Constituents	SedimentFloatablesTemperature
Flows	 Stormwater flows (volume, velocities, and durations) Non-stormwater flows (presence or absence, volume, velocities, and durations)

Drainage Areas

Drainage Area Attributes

Land Area Characteristics

Geographic boundaries

☑ Land uses (residential, industrial, transportation, etc.)

Zoning classifications (residential, commercial, mixed use, etc.)

Sources of Pollutants and Flow

Areas of pollutant and flow generation (area-wide, land use-specific, etc.)

☑ Source locations (industrial areas, facility locations, etc.)

Population Characteristics

Demographics (ethnicity, gender, age, etc.)

Population distribution (density, communities, etc.)

Physical Characteristics

☑ Locations of receiving waters and MS4s

☑ Patterns of precipitation and runoff

☑ Topography, soil types, and vegetation

Areas of imperviousness, open space, or infiltration

Constituent-based organizational approaches (start at Levels 5 and 6)

Source-based organizational approaches (start at Level 4)

Questions?

Second Element Target Audience Strategies

Level 3 Outcomes

Potential Target Audiences by Source Category

Residential Sources	
Do-it-yourselfers (e.g., gardening and	Pet owners
yard care; home improvement; power	Livestock owners
washing; vehicle washing, maintenance,	Smokers
and repair)	Recreational water users (swimmers, surfers,
Service providers (commercial	etc.)
operations corresponding to same	Schoolchildren
activities as above)	Hotline callers
Municipal Sources	
Garbage collectors	Waste water collection and water distribution
Street maintenance staff	maintenance staff
Park and grounds maintenance staff	Animal control staff
Building maintenance staff	Law enforcement staff
Grading plan or permit reviewers	Flood control or reclamation district
Grading or construction inspectors	maintenance staff
Industrial and commercial business	Hazardous materials inspectors
inspectors	
Industrial and Commercial Sources	
Owners	Mobile operators
Managers and supervisors	Contractors (landscaping, parking lot
Employees (skilled workers and	sweeping, etc.)
laborers)	Industry associations
	Employee unions
Construction Sources	
Owners	Contractors (plumbing, etc.)
Developers	Skilled workers
Planning groups	Laborers
New Development and Redevelopment Sources	5
Engineers and architects	Developers
Landscape architects	Housing authorities
Urban planners	Flood control or reclamation district planners
Engineers	

General Types of Target Audience Actions

Pollutant-generating activities (PGAs) are behaviors that contribute pollutants or increase flows to runoff. In this illustration, a woman is using a hose to clean up an outdoor area. If other precautions are not taken to prevent flows and pollutants from leaving the site, this action is likely to be a PGA.

Best management practices (BMPs) are practices designed to prevent, reduce, or eliminate discharges of pollutants and flow. Here the woman has instead chosen to use a broom for cleaning up. Dry sweeping methods are an excellent example of choosing a BMP over a PGA.

Supporting behaviors are actions that encourage or facilitate BMP implementation. Supporting behaviors can be initiated by virtually anyone; in some cases, by dischargers (facility self-inspections, staff training, etc.) and in others by interested parties (pollution reporting, joining an environmental advocacy group, etc.).

Level 3 Outcomes

PGA-BMP Packages

Behaviors are Distributed within Target Audience Populations

Level 2 Outcomes

Barriers + Bridges = Influencing Factors

Personal Factors

Table 5.11: Examples of Personal Factors that Can Affect Behaviors				
	Pesticide Use	Vehicle Washing	Disposal of <u>Reusables</u>	Sediment Discharge
Knowledge	Pesticides should be applied according to label instructions	Controllable spray nozzles can significantly reduce runoff	Compost piles should be turned at least weekly	Silt fences should not be used at the base of a slope
Awareness	My pesticides can harm aquatic life	Commercial car washes minimize runoff	Training on composting is locally available	Discharges can be reported to a local hotline
Attitudes	Healthy plants are more important than environmental protection	People have a right to wash their cars on the street	Composting is too messy to bother with	Construction will be completed long before anyone notices our runoff

External Factors

Table 5.12: Examples of How External Factors Can Influence Behavior				
	Pesticide Use	Vehicle Washing	Disposal of Reusables	Sediment Discharges
Regulatory factors	Some pesticides can be applied only by licensed pest control applicators; others are freely available	A program prohibits discharges from businesses, but not at residences	Re-use of materials is encouraged rather than legally required	Ordinances prohibit discharges, but do not require prevention through erosion control practices
Economic factors	Many pesticides are inexpensive or cheaper in large quantities	Washing in a driveway is cheaper than using a car wash	Changes in practices may require upfront investments (e.g., composting bins)	Materials needed for stabilization projects can be expensive
Technological factors	Effective alternatives do not exist for a particular use (e.g., ant control)	Controllable spray nozzles are widely available	Technologies are not widely available for recycling of "higher numbered" materials	A variety of products are available for effectively managing discharges
Structural factors	Site safety issues limit the use of pesticide alternatives	A nearby parking lot with a pervious surface could facilitate environmentally friendly car washing	A community garden provides residents access to composting bins	Site topography or space limitations inhibit the use of sediment control practices
Organizational factors	A business lacks a policy or procedures on pesticide use	A company has an offsite vehicle washing policy	Employees are actively encouraged to recycle and reuse	Site maintenance is not an organizational priority
Societal factors	Green lawns are valued as part of a community's identity	Washing soapy water onto streets is considered "low class"	Composting is valued by the community	Sediment discharges onto public streets are considered unsightly
Communication factors	Residents lack information on pesticide alternatives	Information on "dry washing" techniques is widely available	Recycling and reuse policy is not communicated to employees	Information on effective erosion control practices is not widely available

Questions?

Third Element Target Audience Strategies

- · Facilitation activities
- Direct implementation of treatment control BMPs
- Administrative activities
- Data collection activities

Level 1 Outcomes

Facilitation Activities

Facilitation Activities

Questions?

Introduction to Strategic Planning for Stormwater Programs

Overview of Structured Planning Process

Step A Characterizing Problems

Multiple Problem Conditions Require Prioritization

Bacterial indicators exceed
 Rec-1 indicators

- Hydromodification in creek
- Low DO levels in estuary
- Bifenthrin toxicity
- Wet weather TSS above benchmarks
 - Benthic impairment

Task 3 Prioritizing Problem Conditions

E O	Step A Task 3 Key Questions Prioritizing Problem Conditions	
Inputs	Key Questions	Outputs
Problem Conditions	Question 1: What is the priority rating of each problem condition?	Priority Problem Conditions
	Question 2: What is the relative importance of each problem condition?	

First Prioritization Step Rating Problem Conditions

Second Prioritization Step Ranking Problem Conditions

1	RANKED ORDER EXAMPLE	GROUPED RANKING EXAMPLE
	 Bacterial indicators exceed REC-1 standards Low DO levels in estuary Wet weather TSS above benchmarks Hydromodification in creek Benthic impairment Bifonthrin toxinity GROUP A (Moderate) Bacterial indicators exceed standards Low DO levels in estuary Wet weather TSS above benchmarks Hydromodification in creek Benthic impairment Bifonthrin toxinity 	 Bacterial indicators exceed REC-1 standards
g Prio		
easing		
Incr		
↑		

Prioritized Problem Conditions Can Be Targeted for Change

1	RANKED ORDER EXAMPLE	GROUPED RANKING EXAMPLE
	 Bacterial indicators exceed REC-1 standards Low DO levels in estuary 	 GROUP A (Moderate) Bacterial indicators exceed REC-1 standards Low DO levels in estuary Wet weather TSS above benchmarks Hydromodification in creek
Priority		
ing		
Increasing		
lnci	5. Benthic impairment	GROUP B (Low)
↑	6. Bifenthrin toxicity	Benthic impairmentBifenthrin toxicity

<u>2</u>	-{}

Step B Task 1 Key Questions Identifying End-state Targets

Inputs	Key Questions	<u>Outputs</u>
Priority Problem Conditions	Question 1: What is the end-state for the problem condition? Question 2: When should the end-state condition be achieved?	End-state Targets

Establishing End-state Targets

Targeting to Regulatory Requirements

Targeting to Higher Outcome Levels

Targeting to Resources

Targeting to Learn and Adapt

Timelines for Achieving Targeted Outcomes

- Complexity
- Cost
- Scale
- Metrics and methods of measurement
- Variability

Documenting Knowledge and Data Gaps

Step 🜔
Examples of Potential Knowledge and Data Gaps (Level 4)

- Understanding of drainage area contributions (EMCs, monitoring data, methodologies, etc.)
- ✓ Understanding of drainage area attributes (land uses, areas of pollutant and flow generation, population distribution, etc.; see also Table 4.14)
- ✓ Understanding of source contributions (potential or actual wet and dry weather discharges of pollutants or flows)
- ✓ Understanding of source attributes (number, size and types of sites or facilities; activities and practices; operations conducted; materials and wastes; see also Table 4.15)
- ✓ Adequacy of facility or other monitoring data (sample size, representative sampling, etc.)
- ✓ Knowledge of target audience attributes
- ✓ Knowledge of economic and social factors affecting drainage areas and sources

Questions?

Case Studies

Case Studies

Case 1- Outcome Levels 6 through 1

- Receiving water and MS4 water quality data available
- Constituent based approach
- Potential sources have been identified

Case 2- Begins at Level 4

- Source based approached
- Limited water quality data

Case Study 1: Assessment of Levels 6 through 1

What are the priority receiving waters?

- Estuary, listed segments of creek upstream of estuary
- What are priority problems for each priority receiving water?

Case Study 1: Assessment of Levels 6 – Receiving Water

- What Changes will be targeted for the receiving water?
 - Improvement in Water Quality
 Reduce nutrient load from dry weather watershed flows
 - Changes in Physical Characteristics Reduce peak volume storm flows resulting in hydromodification in creek

When and how will targeted changes be measured?

Long-term Trend (5-10 years) measurements of:

- Improvement in Water Quality –nutrient concentration and flows (load) from dry weather watershed flows
- Reduction of peak storm flow volume

General Timelines Needed for Achieving Targeted Outcomes

Targeting Change - Spatial

Level/Spati al Area	Site	Drainage Area	Hydrologic Unit	Watershed
Level 6 – Receiving Water	% Reduction in Nutrient Load			San Diego Bay Watershed
Level 5 – Urban Runoff/MS 4	% Reduction in Nutrient Load	Study Area	Cholias Creative	16 2 beg
Level 4 - Sources	% Conversion of High Fertilizer Use Landscaping	a Diego R		

Complexity (depends) and Cost to Measure Targeted Change

- What data is still needed for characterization and targeting outcomes?
 - Adequacy and quality of the water quality data?
 - How are nutrient concentrations impacting biological resources of creek and estuary?
 - What are priority drainage areas that contribute to creek erosion due to hydromod?

Questions?

Case Study 1: Assessment of Level 5- MS4 Contributions

Nutrient Concentrations highest in runoff from Upstream Agricultural Land Use Peak Flows from MS4 Outfalls linked to downstream evidence of extensive erosion of Local Streams

MS4 Outfalls with highest dry weather flows also contribute largest Nutrient loads

- Which MS4 facilities convey flows to priority receiving waters?
- Which facilities or portions of the MS4 are the highest priorities?
 - MS4s discharging to listed segment of creek that have highest dry weather flows and/or nutrient concentrations
 - MS4s discharging to segment of creek with greatest erosion and increase in peak flow

- What Changes in MS4 conditions will be targeted and how will they be measured?
 - Reductions in priority MS4s dry weather flows and/or nutrient concentrations
 - Annual flow monitoring and 2-5 yr. random sampling
 - Reductions in priority MS4s storm flow volumes
 - Storm event flow monitoring

- What data is still needed for characterization and targeting outcomes?
 - Have baseline flows been measured in priority MS4 outfalls to assess change (adequacy)?
 - What contribution does groundwater have in nutrient loading to receiving water compared to MS4?
 - What contribution does runoff from agricultural areas compared to MS4 outfalls?

Step 1 - C Documenting Knowledge and Data Gaps

Case Study 1: Assessment of Level 4- Sources

Upstream Agricultural Land Use has measured higher Nutrient Concentrations in runoff Priority Drainage Areas that contain older development linked to downstream evidence of extensive erosion of Local Streams

Residential and Commercial Landscaped areas in Priority Drainage Area with highest dry weather flows contribute largest Nutrient loads

Apply to Single or Set of Priority MS4 Outfalls

- Which drainage areas contribute priority flows or pollutants to the receiving water?
- Which portions of identified drainage areas are the highest priority?
- What are priority sources of pollutants or flow within drainage area?

Case 1: Source and Impacts – Step A Characterizing Problems

Level 6 – Receiving Water	• <u>Water Quality</u> - Eutrophication of Estuary - Excess Algae and Low DO in Summer • <u>Bio-indicators</u> – Benthic impairment in creek • <u>Physical Evidence</u> of Hydromod. in creek
Level 5 – Urban Runoff	• <u>Water Quality</u> -Nutrient Loading from MS4 • <u>Physical Evidence</u> of Erosion at and downstream of outfalls
Level 4 - Sources	Likely <u>Water Quality</u> Sources: •Upstream Agricultural Runoff •Fertilized Landscape in Residential Comm. •Landscape and Organic Debris in MS4 •Groundwater •Air Deposition •Natural Sources of Nutrients • <u>Physical</u> - Concentrated Higher Peak Flows from Urbanized Areas

What changes will be targeted for each priority source and how will it be measured?

Reductions in nutrient loading in priority areas.

- Reduce yard waste in MS4
- Conversion to zero or minimal fertilized landscapes
- Measured reductions of dry weather flows
- Reduction in peak storm flows from priority drainage areas from older developed areas

- What data is still needed for characterization and targeting outcomes?
 - Is there baseline data on nutrient contributions from residential and commercial landscaped areas and yard waste in MS4? (complex)
 - What baseline data is available on dry weather flows from targeted land uses?
 - What are contributions from other potential sources and how do they compare to targeted sources?

Step 1 - C Documenting Knowledge and Data Gaps

Questions?

Case Study 1: Assessment of Level 3- Target Audience Actions

Upstream Agricultural Land Use has measured higher Nutrient Concentrations in runoff Older development owners and HOAs with no stormwater retention onsite

Residential and Commercial Owners with Landscaped Areas in Priority Drainage Areas and Landscape Contractors – over-use of fertilizer, over-irrigation and poor management of ⁹⁸/_{yard} waste

Who are the target audience responsible for each source contribution?

What specific behaviors are contributing to priority source contribution?

- Commercial/Residential Property owners –High fertilizer use and over-irrigation in landscaped areas
- Landscape Contractors Overuse of fertilizer, poor maintenance of irrigation systems and improper disposal of yard waste

- What behavioral changes will be targeted to reduce or eliminate priority source contributions?
 - Decrease in pollutant generating activities over-use of fertilizer, over-irrigation and improper disposal of yard waste
 - Implementation of BMP non-structural change over-use of fertilizer and disposal practices of yard waste by residential and landscape contractors – structural –turf replacement

Case 1: Targeted Change – Metrics

Level	Interim Targeted Change	5 Year Timeline- Measurement of Targeted Change
6 – Rec. Water	Decreasing trend innutrient concen.	 Monitor Nutrients, DO & Algae – 1X/5 years
5 – Urban Runoff	 % Reduction of Nutrient Load 	 Conduct Random Sampling of MS4 outfalls 2-5 year intervals Annual Flow measurements
4 – Sources	 Achieve % increase in converted lawns Reductions at priority sites 	 Count % of residences & commercial sites converted to lower fertilizer use landscape Conduct Runoff Monitoring of Selected Sites- converted landscapes
3- Target Audience	Reduce % occurrence of high fertilizer use and improper	 Count % occurrence of activities by target audience with higher nutrient loading potential - compare with baseline year
	disposal of yard waste	Step B Targeting Outcomes

Level 3 Outcomes

Potential Target Audiences by Source Category

Residential Sources	
Do-it-yourselfers (e.g., gardening and	Pet owners
yard care; home improvement; power	Livestock owners
washing; vehicle washing, maintenance,	Smokers
and repair)	Recreational water users (swimmers, surfers,
Service providers (commercial	etc.)
operations corresponding to same	Schoolchildren
activities as above)	Hotline callers
Municipal Sources	
Garbage collectors	Waste water collection and water distribution
Street maintenance staff	maintenance staff
Park and grounds maintenance staff	Animal control staff
Building maintenance staff	Law enforcement staff
Grading plan or permit reviewers	Flood control or reclamation district
Grading or construction inspectors	maintenance staff
Industrial and commercial business	Hazardous materials inspectors
inspectors	
Industrial and Commercial Sources	
Owners	Mobile operators
Managers and supervisors	Contractors (landscaping, parking lot
Employees (skilled workers and	sweeping, etc.)
laborers)	Industry associations
	Employee unions
Construction Sources	
Owners	Contractors (plumbing, etc.)
Developers	Skilled workers
Planning groups	Laborers
New Development and Redevelopment Source	S
Engineers and architects	Developers
Landscape architects	Housing authorities
Urban planners	Flood control or reclamation district planners
Engineers	

Tools to Measure Targeted Change – Targeted Sources & PGAs – Shorter Timeline

Questions?

Apply to each priority behavior

- Who are the factors that favor the implementation of pollutant generating activities (PGA)?
- Which of these barriers is contributing to priority PGA's?

105

Personal Factors

Та	ble 5.11: Examples o	of Personal Factors	that Can Affect Be	haviors
	Pesticide Use	Vehicle Washing	Disposal of <u>Reusables</u>	Sediment Discharge
Knowledge	Pesticides should be applied according to label instructions	Controllable spray nozzles can significantly reduce runoff	Compost piles should be turned at least weekly	Silt fences should not be used at the base of a slope
Awareness	My pesticides can harm aquatic life	Commercial car washes minimize runoff	Training on composting is locally available	Discharges can be reported to a local hotline
Attitudes	Healthy plants are more important than environmental protection	People have a right to wash their cars on the street	Composting is too messy to bother with	Construction will be completed long before anyone notices our runoff

External Factors

	Pesticide Use	Vehicle Washing	Disposal of Reusables	Sediment Discharges
Regulatory factors	Some pesticides can be applied only by licensed pest control applicators; others are freely available	A program prohibits discharges from businesses, but not at residences	Re-use of materials is encouraged rather than legally required	Ordinances prohibit discharges, but do not require prevention through erosion control practices
Economic factors	Many pesticides are inexpensive or cheaper in large quantities	Washing in a driveway is cheaper than using a car wash	Changes in practices may require upfront investments (e.g., composting bins)	Materials needed for stabilization projects can be expensive
Technological factors	Effective alternatives do not exist for a particular use (e.g., ant control)	Controllable spray nozzles are widely available	Technologies are not widely available for recycling of "higher numbered" materials	A variety of products are available for effectively managing discharges
Structural factors	Site safety issues limit the use of pesticide alternatives	A nearby parking lot with a pervious surface could facilitate environmentally friendly car washing	A community garden provides residents access to composting bins	Site topography or space limitations inhibit the use of sediment control practices
Organizational factors	A business lacks a policy or procedures on pesticide use	A company has an offsite vehicle washing policy	Employees are actively encouraged to recycle and reuse	Site maintenance is not an organizational priority
Societal factors	Green lawns are valued as part of a community's identity	Washing soapy water onto streets is considered "low class"	Composting is valued by the community	Sediment discharges onto public streets are considered unsightly
Communication factors	Residents lack information on pesticide alternatives	Information on "dry washing" techniques is widely available	Recycling and reuse policy is not communicated to employees	Information on effective erosion control practices is not widely available

Case 1: Targe	t Audiences/ Barriers and Bridges
Level 4 – Sources	 Upstream Agricultural Runoff Fertilized Landscape in Residential Comm. Landscape and Organic Debris in MS4
Level 3 – Target Audiences	 Agricultural Community Residences Landscapers Landscape Contractors Municipal O&M - Street/Catchment
	•Over-irrigation
Level 2 - Barriers & Bridges	· ·

Apply to each priority behavior

- What bridges are necessary to address priority source contributions?
 - Change in regulatory regime to address agricultural waiver; training to increase knowledge of workers; training and education to change awareness and incentives to change old practices.
 - What are the metrics to measure success?

Case 1: O Step B Targeting Outcomes				
Level	Interim Targeted Change	5 Year Timeline- Measurement of Targeted Change		
3 – Target Audience	 % of highest priority agricultural properties implement BMPs % of Residences for target are that use trained landscapers Number of residences that use more efficient irrigation system 	 Survey highest priority sites for pollutant generating activities (PGA) modified per nutrient reduction plan Based on survey of residences within target area that have changed to trained landscaper Based on applications for rebates for smart irrigation systems, turf replacement, drip irrigation upgrades 		
2 – Bridges & Barriers	 Change awareness and knowledge of residences & landscape contractors, on PGAs and the BMPs to reduce over-use of fertilizer, over-irrigation & yard waste disposal. 	and landscape contractors in target areas		

- What data is still needed for characterization and targeting outcomes?
 - Is the targeted audience that is surveyed for change in awareness and knowledge consistent or is there high turn-over reducing effectiveness?
 - Are there other behaviors and barriers that contribute to greater source contributions that have not been identified, prioritized and targeted?

- What facilitation activities will be targeted to reduce or eliminate priority PGAs in target audience?
 - Cooperation Agreement with Agricultural Community
 - Development of Nutrient Reduction Plans BMPs
 - Training Programs for Ag. Workers and Landscapers
 - Establishment of Rebate System to incentivize residents to convert landscaping & irrigation system
- What program data collection, management and reporting is needed?

Case 1: O Step B Targeting Outcomes

Level	Interim Targeted Change	5 Year Timeline- Measurement of Targeted Change
1 – Stormwater Program Activities	 Obtain cooperation agreements with % of priority agricultural sources Institute training for agricultural workers, & landscape contractors on BMPs Establish rebate program 	 Number of agricultural properties that sign up for cooperation agreement on nutrient reduction plan Record number of agricultural workers trained and use BMPs Number of rebates given for irrigation BMPs and number installed

Questions?

Case Study 2: Levels 4 through 1

Sources of MS4 Non-Storm Flows from Stormwater IC/ID Inspection and Enforcement Program:

- Over-irrigation
- Broken/leaking irrigation valves
- Vehicle Washing
 - Hard Surface
 Washing
- Pool Maintenance
 - Dewatering

MS4 Permit requires nonstorm water flows from MS4 to be eliminated

> Storm Drain Inlet from Street

Stormwater Program has **limited MS4 Water Quality Data**

Stormwater Program has **limited Water Quality Receiving** Water Data 115

Apply to Single or Set of Priority MS4 Outfalls

- Which drainage areas contribute to greatest sources of non-storm flows?
 - MS4 flow data or use inspection program data
- Which portions of identified drainage areas are the highest priority?
- What are priority sources of non-storm flows within drainage area?

Characterizing Problems

What changes will be targeted for each priority source and how will it be measured?

- Reductions in non storm flows in priority drainage areas.
 - Measured reductions of dry weather flows from residential and commercial land uses within high priority areas

- What data is still needed for characterization and targeting outcomes?
 - What baseline data is available on dry weather flows from targeted land uses?
 - What non-storm flow data is needed from MS4 outfall monitoring to better prioritize drainage areas?
 - What are contributions from other potential sources and how do they compare to targeted sources?

Step 1 - C Documenting Knowledge and Data Gaps

Who are the target audience responsible for each source contribution?

What specific behaviors are contributing to priority source contribution?

- Commercial/Residential Property owners –Overirrigation in landscaped areas
- Landscape Contractors –Poor maintenance of irrigation systems
- Residences & Commercial Operators vehicle and hardscape washing
 Step A Characterizing Problems

Case Study 2: Assessment of Level 3-Target Audience Actions

Target Audience Behaviors:

- Over-irrigation
- Maintenance of Broken/leaking irrigation valves
- Vehicle Washing
 - Hard Surface
 Washing
- Pool Maintenance
 - Dewatering

Target Audience:

- Residences with Landscaped Areas requiring irrigation
- **Commercial** owners with Landscaped Areas requiring irrigation
- Landscape Contractors providing irrigation system maintenance

- What behavioral changes will be targeted to reduce or eliminate priority source contributions?
 - Decrease in pollutant generating activities –overirrigation, poor maintenance of irrigation system, vehicle washing
 - Implementation of BMP non-structural enforcement of non storm flow prohibition – structural – drip irrigation, smart irrigation systems, leak detection

Tools to Measure Targeted Change – Targeted Sources & PGAs

Decrease in Non-Storm Flows

Apply to each priority behavior

- What are the factors that favor the implementation of pollutant generating activities (PGA)?
- Which of these barriers is contributing to priority PGA's?

Case 1: Target Audiences/ Barriers and Bridges					
Level 3 – Target Audiences and Behaviors	 Residences; Commercial Property Owners; Landscape Contractors Over-irrigation Maintenance of Broken/leaking irrigation valves Vehicle Washing Hard Surface Washing Pool Maintenance Dewatering 				
Level 2 - Barriers & Bridges	 Personal Factors (awareness, knowledge, attitudes) Barrier - Lack of knowledge of over irrigation Barrier - Indifference to changing irrigation practices External Factors (regulatory, financial, social) Barrier - Cost of replacing irrigation system Bridge - Drought awareness & rising cost of water Bridge - Non-Storm Water Prohibition 				
Step A Characterizing Proble ¹²⁴ s					

Apply to each priority behavior

- What bridges are necessary to address priority source contributions? PGA over-irrigation
 - Drought Awareness education connection to over-irrigation
 - Rising cost of water education connection to over-irrigation
 - Non storm flow prohibition in MS4 Permit enforcement of PGA
 - Rebates for More Efficient Irrigation System or Turf Replacement
 Incentives
- What are the metrics to measure success?

Case 1: O Step B Targeting Outcomes				
Level	Interim Targeted Change	5 Year Timeline- Measurement of Targeted Change		
3 – Target Audience	 % of Residences for target area that implement turf replacement Number of residences that use more efficient irrigation system 	 Based on number of application for residential turf replacement Number of commercial properties that have applied for green business program that provides rebates for more efficient irrigation systems Based on applications for rebates for smart irrigation systems, turf replacement, drip irrigation upgrades 		
4 – Bridges & Barriers	 Increased in awareness of connection between drought and over- irrigation Increase knowledge of non-storm water prohibition 	 Surveys of residences in targeted areas on awareness of connection between drought and over-irrigation Surveys of commercial properties knowledgeable about non-storm flow prohibition and enforcement actions Number of enforcement actions that¹ fave been cited and addressed. 		

- What data is still needed for characterization and targeting outcomes?
 - What bridges are most effective in changing behavior in over-irrigation?
 - Are there other behaviors and barriers that contribute to over-irrigation and other PGS that have not been identified, prioritized and targeted?

- What facilitation activities will be targeted to reduce or eliminate priority PGAs in target audience?
 - Establishment of Rebate System to incentivize residents and commercial properties to convert landscaping & irrigation system
 - Expand Education and Outreach to increase awareness of non-storm flow prohibition, enforcement program and rebate incentive program.
 - Increase Enforcement and Fines for Over-irrigation
- What program data collection, management and reporting is needed?

Level 1 Outcomes

129

Case 2: Importance of Program Effectiveness Assessment

- Allows program managers to assess effectiveness of programs at multiple outcome levels – different metrics, timelines, interlinked outcomes
- What's more successful: education, enforcement or incentives? Or is it the combination that is most effective?
- What structural BMPs will ultimately be needed where more cost effective non-structural hits limitations? Most successful runoff reduction program will be 30-50% effective.

Questions?

Thank you!

Jon Van Rhyn – County of San Diego

- Jon.vanrhyn@sdcounty.ca.gov
- David Pohl ESA, San Diego
 - dpohl@esassoc.com
- Karen Ashby Larry Walker Associates, Davis
 - karena@lwa.com