San Diego Regional Storm Water Resource Plan

Stephanie Gaines –County of San Diego Ruth de la Rosa – County of San Diego (Project Manager - email: <u>ruth.delarosa@sdcounty.ca.gov</u>) David Pohl - ESA

Purpose and Outcome of San Diego Regional Storm Water Resource Plan (SWRP)

- The purpose of the SWRP is to identify and prioritize projects to "bring to the top" those multi-benefit projects that can best meet the identified priorities on a watershed basis.
- Outcome of plan is to provide the guidance and tools to support the region in developing more competitive projects for state-wide grant funding opportunities to achieve watershed and regional planning goals

"Functional Equivalent" SWRP

How are Projects Identified?

How are projects scored and prioritized?

SWRP Checklist – Flow Charts

Example Project – Green Street

CHECKLIST STEP/ BENEFIT	STEP 1 ELIGIBILITY	STEP 2 PROJECT METRICS	STEP 3 WATERSHED ANALYSIS	TOTAL SCORE
WATER QUALITY	✓ Increase Runoff Treatment	16 - Reduces TMDL pollutants & runoff volumes	20 – Priority in WQIP & located in high loading area	36
WATER SUPPLY	✓ IncreasedGroundwaterRecharge	10 – infiltrates to groundwater non- direct use	Not located in groundwater aquifer and recharge area	10
FLOODING	✓ Decrease In Flood Risk	20 – reduces flood risk & metrics calculated	20 – located in high risk flood area	40
ENVIRON- MENTAL	✓ Increase In Urban Green Space	5 — increases urban green space	20 – identified as high priority in watershed plan	25
COMMUNITY	✓ Provides Public Education	4 – signage and outreach for public education	20 – identified as high priority in outreach opportunity	24
RESULT/ SCORE	Meets 2 Or More Benefits	55	80	135 out of 200

How are Benefits Quantified through Project Metrics?

- Checklist includes points for providing quantification of project metrics, e.g. pollutant load reduction
- Consistency in metrics on regional basis promoted
- Checklist includes worksheets that provide example calculations
- Project sponsors are encouraged to develop quantification of project metrics to rank higher and be more competitive for state-wide grants
- Examples in worksheet promote consistency in the basis for the project metrics, but provide flexibly given wide range of project types

Pollutant Load Reduction Worksheet Example Metric

Metric Reporting Units: Report pollutant load reductions in **lbs/year or MPN/yr** for each high priority and priority water quality conditions or constituents identified in the applicable WQIP and/or watershed plan. Projects designed to meet the minimum pollutant removal requirements under the MS4 Permit using the 85th percentile design storm event, the metric for load reduction can be reported as Ibs/design storm event or MPN/design storm event.